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Abstract. We describe the ordinary characters of trivial source modules lying in blocks with
cyclic defect groups relying on their recent classification in terms of paths on the Brauer tree
by G. Hiss and the second author. In particular, we show how to recover the exceptional
constituents of such characters using the source algebra of the block.

1. Introduction

Let G be a finite group, let p be a prime number such that p | |G|, and let k be an algebraically
closed field of characteristic p ≥ 3. Moreover, assume that we are given a p-modular system
(K,O, k) which is large enough for G and all of its subgroups and quotients. The main aim of
this article is to provide a complete description of the ordinary characters of the trivial source
modules lying in a p-block B with a non-trivial cyclic defect group D.

First of all, it is well-known that trivial source kG-modules are liftable to OG-lattices, and
moreover that they lift in a unique way to a trivial source OG-lattice. Therefore it is natural to
consider the K-character afforded by this trivial source lift and consider the following problem.

Problem A. Given a p-block B of kG with non-trivial cyclic defect groups, describe all the
irreducible constituents of the ordinary characters afforded by the trivial source lift to O of all
trivial source B-modules.

Of course a solution to Problem A should be given in terms of certain block invariants, which
we will determine in due course. To begin with, trivial source modules in blocks with cyclic
defect groups are classified by [HL19] using the much older classification of the indecomposable
modules in such blocks by Janusz [Jan69] through a so-called path on the Brauer tree of B.
See §2.4. However, as trivial source modules are not invariants of the Morita equivalence class of
the block B, the data of the Brauer tree is not sufficient in general. However, they are invariants
of the source-algebra-equivalence class of B. Hence the classification of [HL19] also makes use
of further parameters parametrising the source algebra of B according to [Lin96, Theorem 2.7].
Namely a certain endo-permutation kD-module, which we will denote W , and a sign function
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that can be determined from the values of the ordinary irreducible characters of B at certain
elements of D.

Our main result is Theorem 7.1, which provides us with a solution to Problem A, and indeed
describes the K-character afforded by the trivial source lift of all trivial source B-modules with
arbitrary non-trivial vertices in terms of the above parameters, that is the Brauer tree of B,
the kD-module W and the sign function. We postpone the precise statement of our main result
to Section 7 because it requires introducing a lot of notation and concepts. However, more
accurately, the irreducible constituents of these characters which are non-exceptional characters
of B can easily be determined from the aforementioned path associated to the module. On
the other hand, the constituents of these characters which are exceptional characters of B are
much more difficult to describe and all our results in this article focus on this problem. Also
notice that trivial source B-modules with trivial vertices are just the projective indecomposable
modules and their characters are well-known. See §2.5.

Theorem 7.1 generalises on the one hand results on characters of trivial source modules in
cyclic blocks obtained by the first author and N. Kunugi in [KK10], and on the other hand
results of M. Takahashi [Tak12] describing the characters of Scott modules for finite groups with
cyclic Sylow p-subgroups (see Remark 7.3).

The paper is organised as follows. In Section 2, we introduce our notation and recall the
necessary background results on blocks with cyclic defect groups. In Section 3, we point out
some general results about characters of trivial source modules in blocks with cyclic defect
groups. In Sections 4, 5, and 6, we describe a reduction procedure in three steps bringing us
back to computing certain distinguished K-characters of the defect group D of the block B.
Finally, in Section 7, we recover all characters of all trivial source B-modules from those of the
trivial source b-modules, where b is the Brauer correspondent of B in NG(D1) and D1 denotes
the unique cyclic subgroup of order p of D. This is achieved using a perfect isometry between b
and B induced by a Rickard complex from Rickard’s and Rouquier’s work on blocks with cyclic
defect groups. (See [Lin18, Theorem 11.12.1].)

Finally, we note that we leave the case p = 2 for a further piece of work as it requires further
technical computations on characters afforded by endo-permutation lattices with determinant
one.

2. Notation and quoted results

2.1. General notation. Throughout, we let p be an odd prime number and G a finite group
of order divisible by p. We let (K,O, k) be a p-modular system, where O denotes a complete
discrete valuation ring of characteristic zero with unique maximal ideal p := J(O), algebraically
closed residue field k := O/p of characteristic p, and field of fractions K = Frac(O), which we
assume to be large enough for G and its subgroups in the sense that K contains a root of unity
of order exp(G), the exponent of G.

Unless otherwise stated, for R ∈ {O, k}, RG-modules are assumed to be finitely generated left
RG-lattices, that is, free as R-modules, and by a block B of G, we mean a block of kG. Given a
subgroup H ≤ G, we let R denote the trivial RG-lattice, we write ResGH(M) for the restriction

of the RG-lattice M to H, and IndGH(N) for the induction of the RH-lattice N to G. Given a
normal subgroup U of G, we write InfGG/U (M) for the inflation of the R[G/U ]-module M to G.

If M is a uniserial kG-module, then we denote by `(M) its composition length. If P is a p-group
and Q ≤ P , then ΩP/Q denotes the relative Heller operator with respect to Q. In other words,
if M is an RP -lattice, then ΩP/Q(M) is the kernel of a Q-relative projective cover PP/Q(M) of
M . (See [Thé85, Thé07] for this less standard notion.) In particular Ω := ΩP/{1} is the usual
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Heller operator. We denote by Irr(G) (resp. Irr(B)) the set of irreducible K-characters of G
(resp. of the block B of kG). In general, we continue using the notation of [HL19] inasmuch as
it was introduced therein and we refer the reader to [Lin18, Thé95] for further standard notation.

2.2. Trivial source and cotrivial source lattices. An indecomposable RG-lattice M with
vertex Q ≤ G is called a trivial source RG-lattice if the trivial RQ-lattice R is a source of M .
We adopt the convention that trivial source RG-lattices are indecomposable by definition.

It is well-known that any trivial source kG-module M is liftable to an OG-lattice. In other

words, there exists an OG-lattice M̃ such that M ∼= M̃/pM̃ (see e.g. [Ben98, Corollary 3.11.4]).
More accurately, in general, such modules afford several lifts, but, up to isomorphism, there is
a unique one amongst these which is a trivial source OG-lattice. We denote this trivial source

lift by M̂ and simply by χM the K-character afforded by M̂ , that is the character of K ⊗O M̂ .
Character values of trivial source lattices have the following properties.

Lemma 2.1 ([Lan83, Lemma II.12.6]). Let M be a trivial source kG-module and let x is a
p-element of G. Then:

(a) χM (x) equals the number of indecomposable direct summands of ResG〈x〉(M) isomorphic

to the trivial k〈x〉-module. In particular, χM (x) is a non-negative integer.
(b) χM (x) 6= 0 if and only if x belongs to some vertex of M .

Following the terminology of [HL89, Definition 4.1.10], an indecomposable RG-lattice M with
vertex Q ≤ G is called a cotrivial source RG-lattice if the RQ-lattice Ω(R) is a source of M .
It follows that any cotrivial source kG-module M is liftable to an OG-lattice and affords a

unique lift M̂ which is a cotrivial source OG-lattice. We denote by χM the character afforded

by K ⊗O M̂ .

2.3. Blocks with cyclic defect groups. From now on, unless otherwise stated, we let B
denote a block of kG with cyclic defect group D ∼= Cpn with n ≥ 1. For 0 ≤ i ≤ n, we denote by
Di the unique cyclic subgroup of order pi and we set Ni := NG(Di). We let e denote the inertial

index of B and set m := |D|−1
e , which we call the exceptional multiplicity of B. Then e | p− 1.

There are e simple B-modules S1, . . . , Se and e+m ordinary irreducible characters. We write

Irr(B) = {χ1, . . . , χe} t {χλ | λ ∈ Λ} ,
where Λ is an index set with |Λ| := m (we will give a precise definition of Λ in Section 7). If
m > 1, the characters {χλ | λ ∈ Λ} denote the exceptional characters of B, which all restrict in
the same way to the p-regular conjugacy classes of G and the characters χ1, . . . , χe denote the
non-exceptional characters of B, which are p-rational. For Λ′ ⊆ Λ, we set

χΛ′ :=
∑
λ∈Λ′

χλ .

We write Irr◦(B) := {χ1, . . . , χe, χΛ}, Irr′(B) := {χ1, . . . , χe} and IrrEx(B) := {χλ | λ ∈ Λ}.
We let σ(B) denote the Brauer tree of B. The vertices of σ(B) are labelled by the ordinary
characters in Irr◦(B) and the edges of σ(B) are labelled by the simple B-modules S1, . . . , Se. If
m > 1 the vertex corresponding to χΛ is called the exceptional vertex and is indicated with a
black circle in the drawings of σ(B). Furthermore, we assume that σ(B) is given with a planar
embedding, determined by specifying, for each vertex of σ(B), a cyclic ordering of the edges
adjacent to this vertex. We use the convention that in a drawing of σ(B) in the plane, the
successor of an edge is the counter-clockwise neighbour of this edge. Let now u be a generator
of D1. A vertex χ ∈ Irr◦(B) of σ(B) is said to be positive if χ(u) > 0 and we write χ > 0,
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whereas it is said to be negative if χ(u) < 0 and in this case we write χ < 0. See [HL19,
§4.2]. The character theory of blocks with cyclic defect groups is essentially described by Dade’s
work [Dad66]. For more detailed information relative to Brauer trees we also refer the reader to
[Alp86, §17] and [HL89, Chapters 1 & 2].

2.4. Indecomposable modules in blocks with cyclic defect groups. By results of Janusz
[Jan69, §5], each indecomposable B-module X which is neither projective nor simple can be
encoded using a path on σ(B), which is by definition a certain connected subgraph of σ(B).
This path may be seen as an ordered sequence (E1, . . . , Es) of edges of σ(B), called a top-socle
sequence of X, where Ei, Ei+1 have a common vertex for every 1 ≤ i ≤ s − 1, where the
odd-labelled edges are in the head of X and the even-labelled edges are in the socle of X, or
conversely, and where some edges may be passed twice if necessary. Moreover, [BC02] associates
to each indecomposable B-module X two further parameters: a direction ε = (ε1, εs) and a
multiplicity µ. For i ∈ {1, s} we set εi = 1 if Ei is in the head of X and εi = −1 if Ei is in the
socle of X. If m = 1, then µ := 0. If m > 1, then µ corresponds to the number of times that
a simple module Ej connected to the exceptional vertex occurs as a composition factor of X
(this is independent of the choice of Ej). The module X is entirely parametrized by its path,
direction and multiplicity. We refer to [Jan69, BC02, HL19] for further details. We will use this
classification in order to state our main result in Section 7.

2.5. PIMs and hooks in blocks with cyclic defect groups. Blocks with cyclic defect
groups being Brauer graph algebras (with respect to the Brauer tree), the structure of the PIMs
of B, can be described as follows (see e.g. [Ben98, §4.18]). If S is a simple B-module, then its
projective cover PS is of the form

PS =
S

Qa⊕Qb
S

,

where S = soc(PS) = head(PS) and the heart of PS is rad(PS)/ soc(PS) = Qa ⊕ Qb for two
uniserial (possibly zero) B-modules Qa and Qb. Furthermore, if the end vertices of the edge of
σ(B) corresponding to S are labelled by the irreducible characters χa and χb, then the projective
indecomposable character corresponding to PS is ΦS = χa+χb. The PIMs of B are precisely the
trivial source B-module with vertex D0 = {1}. Furthermore, Green’s walk around the Brauer
tree [Gre74] provides us with a description of certain distinguished indecomposable B-modules,
called hooks in [BC02]. More precisely, following [BC02, §2.3], the uniserial modules of the form

Ha := S
Qa and Hb := S

Qb

for a simple B-module S are called the hooks of B. The vertices of such modules are the defect
groups of B, and if e > 1 any lift of Ha affords the character χa and any lift of Hb affords the
character χb.

2.6. Trivial source modules in blocks with cyclic defect groups, reduction to kD. We
quickly recall the principal steps in the [HL19] classification of trivial source B-modules.

First of all, up to isomorphism, the set of trivial source B-modules with a given vertex Di ≤ D
(1 ≤ i ≤ n) form exactly one Ω2-orbit {Ω2a(M) | 0 ≤ a ≤ e − 1} of B-modules, where M is a
given trivial source B-module with vertex Di, and the set of cotrivial source modules with vertex
Di forms the Ω2-orbit {Ω2a+1(M) | 0 ≤ a ≤ e − 1}. This follows from the fact that the trivial
kDi-module is periodic of period 2. Now, the trivial source B-modules are classified by [HL19,
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Theorem 5.4] in terms of their path on the Brauer tree σ(B). Our aim is to use this classification
in order to determine the K-characters of their trivial source lift to O. More precisely, we are
going to go through the reduction to kD used in [HL19] to recover the trivial source B-modules
in order to compute their ordinary characters, as well.

Thus, throughout we let b denote the Brauer correspondent of B in N1, we let c be a block
of CG(D1) covered by b, and we let A denote a source algebra of c. Furthermore, we let T (c)
be the inertia group of c in N1 and b′ be the unique block of T (c) covering c, i.e., b′N1 = b and
b′ is the Fong-Reynolds correspondent of b. Then D is a defect group of the blocks b, b′ and c.
The block c is nilpotent, whereas the blocks b and b′ have inertial index e and exceptional
multiplicity m. Furthermore, we let W denote the indecomposable capped endo-permutation
kD-module parametrizing the block B up to source-algebra equivalence. (See [Lin96, Theo-
rem 2.7].) Concretely, W may be thought of, either as a source of the simple b-modules, or as
a source of the unique simple c-module. Hence D1 acts trivially on W .

First, we recall that if P is a finite p-group, then a kP -module M is called endo-permutation
if its k-endomorphism algebra Endk(M) is a permutation kP -module. Moreover, an endo-
permutation kP -module M is said to be capped if it has an indecomposable direct summand
with vertex P , which we is usually denoted by Cap(M). For further details, we refer the reader
to the survey [Thé07]. Endo-permutation modules over abelian p-groups were classified by Dade
[Dad78a, Dad78b]. This classification – see [Thé07] and [HL19, §4.5] – allows us to write the
module W parametrizing the source-algebra of B as follows:

Notation 2.2. The kD-module W has the form

W = Ωa0

D/D0
◦ Ωa1

D/D1
◦ · · · ◦ Ω

an−1

D/Dn−1
(k)

with ai ∈ {0, 1} for each 0 ≤ i ≤ n − 1. Moreover, we assume that i0 < i1 < . . . < is are the
indices such that ai0 = . . . = ais = 1 and ai = 0 if i ∈ {0, . . . , n − 1} \ {i0, . . . , is}, and we set
s := −1 if W = k. We may in fact also assume that a0 = 0, since D1 acts trivially on W . Hence,
in the sequel, we will write

W = W (0 < i0 < i1 < . . . < is < n) .

Furthermore, for each 1 ≤ i ≤ n we set `i := dimk

(
Cap(ResDDi(W ))

)
, which can be explicitly

computed as `i =
∑

0≤ij<i(−1)jpi−ij + (−1)|{j|0≤ij<i}| (see [HL19, Theorem 5.1]).

The reduction to kD works as follows. Firstly, the Green correspondence with respect to
(G,N1;D), which we denote by f−1 (upwards) and f (downwards), commutes with the Brauer
correspondence and preserves vertices and sources, hence trivial source modules. Secondly, the
theorem of Fong-Reynolds provides us with a source-algebra equivalence between b and b′, which
obviously preserve trivial source modules. Thirdly, we can then reduce to c, which is a nilpotent
block, via induction/restriction using Clifford’s theory, which also preserve vertices and sources.
We can then further reduce to kD via two Morita equivalences (see §2.7 for details):

kD −mod A−mod c−mod
∼M

W⊗k−
∼M

If M is an indecomposable c-module, then we simply call Morita correspondent of M , the Morita
correspondent of M in kD under the composition of these two Morita equivalences. In the sequel,
by abuse of notation, we will drop the module category notation and we will simply write our
equivalences in terms of algebras.
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Lemma 2.3 ([HL19, Lemma 4.6]). Let M be the unique trivial source c-module with vertex
1 < Di ≤ D. Then the Morita correspondent of M is the kD-module

UDi(W ) :=
(
IndDDi ◦Cap ◦ResDDi

)
(W )

and satisfies dimk(UDi(W )) = `i · pn−i.

We emphasise that UDi(W ) is not a trivial source module any more in general. We refer the
reader to [HL19] for proofs and further details on this subsection.

2.7. On Puig’s characterization of source algebras of nilpotent blocks. The block c
lifts uniquely to a block of OCG(D1), say c̃. Then Puig’s theorem on nilpotent blocks (see

[Lin18, Theorem 8.11.5, Corollary 8.11.11]) states that any source algebra Ã of the block c̃ is
isomorphic to

S̃ ⊗O OD
as interior D-algebra, where S̃ := EndO(W̃ ) for an indecomposable endo-permutation OD-

module W̃ with vertex D and of determinant 1. Moreover, if W := k ⊗O W̃ , then any source
algebra A of the block c is isomorphic to

S ⊗k kD
as interior D-algebra, where S := Endk(W ) and W is also an indecomposable endo-permutation
kD-module with vertex D. Moreover, the module W can be explicitly realised as a source of the
unique simple c-module V , and hence also as a source of the simple b-modules. As D1 E CG(D1)
it follows from Clifford’s theory that D1 acts trivially on V , hence also on W .

More precisely, we have Morita equivalences:

Φk : kD A c
∼M

W⊗k−
∼M

The first one is obtained by tensoring over k with W viewed as an S-module. In other words,
an arbitrary indecomposable A-module is of the form W ⊗k U , where U is an indecomposable
kD-module. For the second one let i ∈ cD be a source idempotent of c such that A = ikGi.
Then the (c, A)-bimodule ci and the (A, c)-bimodule ic realise a Morita equivalence between A
and c, where an indecomposable c-module M corresponds to the A-module iM . See [Thé95,
(38.2)]. There are also two Morita equivalences analogously defined over O:

ΦO : OD Ã c̃
∼M

W̃⊗O−

∼M

Tensoring everything with K we write WK := K ⊗O W̃ , SK := K ⊗O S = EndK(WK), so that
there are Morita equivalences

ΦK : KD K ⊗O Ã ∼= SK ⊗K KD K ⊗O c̃ .
∼M

WK⊗K−
∼M

These in turn induce bijections

ΓK : IrrK(D) IrrK(K ⊗O Ã) IrrK(c)∼ ∼

between the sets of K-characters of D and c, where IrrK(K ⊗O Ã) = {ρ
W̃
· λ | λ ∈ IrrK(D)}

(see [Thé95, (52.6)]) and ρ
W̃

is the K-character afforded by W̃ . By abuse of notation, we also
denote by ΓK its Z-linear extension to Z IrrK(D). Finally, we may use these bijections to label
the K-characters of c. In other words, we may write

IrrK(c) = {ψλ | λ ∈ IrrK(D)} where ψλ := ΓK(λ) .

See [Thé95, (52.8)(a) and its proof].
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3. Ordinary characters of trivial source modules: general results

3.1. PIMs and hooks. We start with two elementary cases, which already let us rule out the
case in which the exceptional multiplicity is one.

Lemma 3.1.

(a) If M is a trivial source B-module with vertex D0 = {1}, then M is a PIM. In other
words, there exists a simple B-module S such that M = PS and

χM = χa + χb ,

where χa and χb label the vertices of σ(B) adjacent to the edge labelled by S.
(b) If a hook M of B is a trivial source module, then χM ∈ Irr◦(B) and χM (x) > 0 for each

x ∈ D.

Proof. (a) Well-known. See §2.5.
(b) See §2.5 and Lemma 2.1.

�

Corollary 3.2 (The case m = 1). If m = 1, then the trivial source B-modules are precisely the
PIMs and the hooks of B whose Green correspondents in b are simple. Their K-characters are
described by Lemma 3.1(a) and (b).

Proof. If m = 1, then e = |D| − 1, hence D = D1 is cyclic of order p. The trivial source
B-modules with vertex D0 are the PIMs of B. Now as D = D1, and hence NG(D) = NG(D1),
the simple b-modules, which all have vertex D, are trivial source modules by Clifford theory.
These are then all the trivial source b-modules with vertex D and their Green correspondents
in B must be exactly the trivial source B-modules with vertex D. The claim follows. �

Thus, henceforth, we may assume that m > 1.

3.2. Arbitrary vertices. Next we state some general facts about characters of trivial source
modules with arbitrary vertices.

Notation 3.3. If M is a trivial source B-module (with an arbitrary vertex), then the K-character

χM afforded by M̂ , the trivial source lift of M , satisfies

〈χM , χ〉G ∈ {0, 1} for all χ ∈ Irr(B)

e.g. by [HL19, Theorem A.1(d)] if e > 1, whereas it is obvious if e = 1. Therefore, throughout
we shall write

χM = ΨM + ΞM
where ΨM is a sum (possibly empty) of pairwise distinct non-exceptional irreducible characters
in Irr′(B) and ΞM is a sum (possibly empty) of pairwise distinct non-exceptional irreducible
characters in IrrEx(B). We call ΨM the non-exceptional part of χM and ΞM the exceptional part
of χM . By the above ΞM is of the form ΞM = χΛ′ for sum Λ′ ⊆ Λ and |Λ′| = 〈ΞM ,ΞM 〉G.

The irreducible constituents of the character ΨM are entirely determined by [HL19, Theo-
rem 5.4] together with [HL19, Theorem A.1]. Hence our main task is to determine the con-
stituents of ΞM in the general case.

We start by proving that for a non-projective trivial source module M which is not a hook,
ΞM is invariant under Ω2, hence depends only on the order of the vertices.
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Lemma 3.4. Assume e > 1 and m > 1. Let M be a non-projective trivial source B-module
which is not a hook. Then

ΞΩ2a+1(M) = χΛ − ΞM and ΞΩ2a(M) = ΞM

for each 0 ≤ a < e. In particular, if M and N are two non-isomorphic trivial source B-modules
with a common vertex Di (where 1 ≤ i ≤ n) and which are not hooks, then ΞM = ΞN .

Proof. As recalled at the beginning of the section Ω2a+1(M) is a cotrivial source B-module for
each 0 ≤ a < e and Ω2a(M) is a trivial source B-module for each 0 ≤ a < e. Since M is not a
hook, by [HL19, Theorem A.1], the head of M has exactly one constituent corresponding to a
simple B-module E labelling an edge of σ(B) adjacent to the exceptional vertex. Therefore the
multiplicity of P (E) as a direct summand of P (M) is one and

χP (M) = Θ + χΛ ,

where by Lemma 3.1 all the irreducible constituents of Θ are in Irr′(B).

Now if Ω(M) P (M) M is a projective cover of M , then Ω̂(M) P (M̂) M̂ is a

projective cover of M̂ . It follows that in the Grothendieck group of KG we have

χΩ(M) = χP (M) − χM = Θ + χΛ −ΨM − ΞM ,

hence ΞΩ(M) = χΛ − ΞM . The same argument applied to Ω(M) yields ΞΩ2(M) = χΛ + ΞM and
the first claim follows by iteration of this argument.

The second claim is then straightforward, because Di is a common vertex of M and N , there
exists an integer 1 ≤ a < e such that N ∼= Ω2a(M). �

With these general results, we can proceed in the next four sections in four successive steps
to recover the characters of the trivial source B-modules in the general case.

4. Step 1: Characters of the Morita correspondents in kD

In this section, we compute the K-characters of the Morita correspondents in kD of the
trivial source c-modules, that is of the modules UQ(W ) (1 < Q ≤ D). To achieve this aim, in an
intermediary step, we describe the character of the capped endo-permutation kD-module W .

4.1. Representation theory of D. The representation theory of kD is well-known. In partic-
ular, kD has finite representation type. Letting u denote a generator of D, there is a k-algebra
isomorphism kD ∼= k[X]/(X − 1)p

n
mapping u 7→ X := X + (X − 1)p

n
, and for 1 ≤ r ≤ pn the

module Mr := k[X]/(X − 1)r is the unique indecomposable kD-module of k-dimension r. In
fact, these form a complete set of representatives of the isomorphism classes of indecomposable
kD-modules, and are all uniserial. We refer the reader to [Thé95, Exercises 17.2 and 28.3] for
further details.

Similarly all indecomposable modules over all subgroups and quotients of D are parametrized
by their k-dimension. Thus, when the module structure is clear from the context, we use the
same notational conventions for quotients and subgroups of D as for D itself. [Thé95, Exercises
17.2 and 28.3] in particular tell us that (endo-permutation) kD-modules can be understood
inductively from proper subgroups making repetitive use of the Heller operator and inflation.
Now, it follows directly from the definition of Mr that if 0 ≤ i ≤ n−1 and 1 ≤ r ≤ pn−i−1, then

Di = 〈upn−i〉 acts trivially on Mr, so that Mr may be considered as k[D/Di]-module, namely
by abuse of notation we may write Mr = InfDD/Di(Mr).
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Notation 4.1. We let ζ ∈ K× denote a primitive pn-th root of unity in K. Then

IrrK(D) = {λDκ : D = 〈u〉 −→ K×, u 7→ ζκ | κ ∈ Z and 0 ≤ κ ≤ pn − 1} .
Then λD0 = 1D is the unique non-exceptional K-character of D and

{λDκ | 1 ≤ κ ≤ pn − 1} = IrrEx(kD)

(see e.g. [Dad66]). Clearly (see e.g. Lemma 3.1(a)) the projective indecomposable module kD
affords the K-character

χkD =

pn−1∑
κ=0

λDκ .

Remark 4.2. Given 0 ≤ i ≤ n− 1, the character λDκ may be seen as inflated from a character of
D/Di if and only if Di ≤ kerλDκ . Thus,

InfDD/Di (IrrK(D/Di)) = {InfDD/Di(λ
D/Di
ν ) | 0 ≤ ν ≤ pn−i − 1}

= {λDκ | 0 ≤ κ ≤ pn − 1 and pi|κ} .

4.2. Character of the endo-permutation kD-module W . In view of §2.6 and §2.7, we first
need to describe the K-characters of the capped endo-permutation OD-lattices of determinant
1 lifting a module of the form WD(a0, . . . , an−1) with a0 = 0. We recall that given an OD-
lattice L, we may consider the composition of the underlying representation of D with the
determinant homomorphism det : GL(L) −→ O×. This is a linear character of D, called the
determinant of L. If this character is the trivial character, then it is said that L is an OD-lattice
of determinant 1.

Lemma 4.3.

(a) Any permutation OD-lattice has determinant 1.
(b) If N is an indecomposable capped endo-permutation kD-module, then N is liftable to an

OD-lattice, and amongst all possible lifts of N there is a unique lift Ñ with determinant 1.

Proof. (a) This holds because p is odd. See [LT19, Lemma 3.3(a)].
(b) It is well-known that all modules belonging to a cyclic block with inertial index 1 are

liftable. The claim about the determinant holds by [Thé95, (28.1)].
�

Notation 4.4. If N is an indecomposable capped endo-permutation kD-module, then we denote
by χN the K-character of its unique lift of determinant 1. Notice that the unique indecompos-
able capped endo-permutation kD-module which is also a trivial source module is the trivial
module k. Its trivial source lift is the trivial OD-lattice O, which obviously has determinant 1,
hence the above notation agrees with the notation chosen for the character of the trivial source
lift.

Lemma 4.5. If B = kD, then there is a unique trivial source module with vertex Di for each
1 ≤ i ≤ n, namely IndDDi(k) = InfDD/Di(k[D/Di]) = M|D/Di|, which we may also see as the

permutation kD-module k[D/Di] with stabiliser Di.

(a) The trivial source lift of k[D/Di] is O[D/Di] and has determinant 1.
(b) We have

χM|D/Di|
=

∑
0≤κ≤pn−1

pi|κ

λDκ .
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Proof. The module IndDDi(k) is indecomposable, hence is the unique trivial source kD-module

with vertex Di and has dimension |D/Di|. It is also clear that IndDDi(k) is the inflation from
D/Di to D of the projective indecomposable k[D/Di]-module k[D/Di]. Now the trivial source
lift of k[D/Di] is IndDDi(O) = O[D/Di], which has determinant 1 by Lemma 4.3(a). Hence, it
follows from the above and Remark 4.2 that

χM|D/Di| = χInfDD/Di
(k[D/Di])

= InfDD/Di

|D/Di|−1∑
ν=0

λD/Diν

 =
∑

0≤κ≤pn−1
pi|κ

λDκ .

�

Now we recall that in all generality, with the notation introduced in Subsection 2.1, we
have: M is an endo-permutation kP -module if and only if ΩP/Q(M) is an endo-permutation
kP -module (i.e. here P is an arbitrary p-group and Q ≤ P ). This is essentially because, by
definition, ΩP/Q(M) is the kernel of a Q-projective cover of M , so that tensoring it with its
dual gives a permutation kP -module if and only if Endk(M) = M∗ ⊗k M is a permutation
kP -module.

Lemma 4.6. Let 0 ≤ i ≤ n− 1 and 1 ≤ r ≤ pn−i − 1. Then the following holds:

(a) ΩD/Di(Mr) = InfDD/Di (Ω(Mr)) = M|D/Di|−r;

(b) Let N be an indecomposable capped endo-permutation kD-module and let Ñ denote its

unique lift with determinant 1. If 1 ≤ i ≤ n and dimk(N) ≤ pn−i − 1, then ΩD/Di(Ñ) is
the unique lift of determinant 1 of ΩD/Di(N).

(c) ΩD/Di(k) = M|D/Di|−1, its lift of determinant 1 is ΩD/Di(O) and it affords the K-
character

χΩD/Di (k) =
( ∑

0≤κ≤pn−1
pi|κ

λDκ

)
− λD0 =

∑
1≤κ≤pn−1

pi|κ

λDκ .

Proof. (a) Let Mr be the unique k[D/Di]-module of dimension r and let

0 Ω(Mr) P (Mr) Mr 0

be a projective cover of Mr. Because D/Di is a p-group and Mr is uniserial, the head
of Mr is the trivial k[D/Di]-module and it follows that P (Mr) = k[D/Di], i.e. the
unique projective indecomposable k[D/Di]-module. Moreover, Ω(Mr) is indecomposable
because Mr is indecomposable. Therefore, taking inflation to D yields a Di-relative
projective cover of Mr seen as a kD-module

0 InfDD/Di (Ω(Mr)) InfDD/Di (P (Mr)) InfDD/Di(Mr) 0

since InfDD/Di(Mr) = Mr. Thus, PD/Di(Mr) = InfDD/Di (P (Mr)) = k[D/Di], i.e. the

indecomposable permutation kD-module with stabiliser Di, and

ΩD/Di(Mr) = InfDD/Di (Ω(Mr)) .

Moreover,

dimk(ΩD/Di(Mr)) = dimk k[D/Di]− dimkMr = |D/Di| − r .
(b) For the second claim, let

0 ΩD/Di(N) PD/Di(N) N 0
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be a Di-relative projective cover of N . Then, by the arguments of the proof of (a),
PD/Di(N) = k[D/Di] is a permutation kD-module and this short exact sequence lifts to

a Di-relative projective cover of Ñ :

0 ΩD/Di(Ñ) O[D/Di] Ñ 0

(see e.g. [Gre74, (3.6)]). But then for each g ∈ D, by Lemma 4.5(a) and the assumption

that Ñ has determinant 1, we have

det(g,ΩD/Di(Ñ)) det(g, Ñ)︸ ︷︷ ︸
=1

= det(g,O[D/Di]) = 1 ,

hence det(g,ΩD/Di(Ñ)) = 1, as required.

(c) The first claim follows from (a) since k = M1. The second claim holds by (b). For the
third claim, we consider again the Di-relative projective cover of the trivial OD-lattice

0 ΩD/Di(O) O[D/Di] O 0 .

Thus, computing in the Grothendieck ring of KD, we obtain that the K-character af-
forded by the lift of determinant 1 of ΩD/Di(k) is

χΩD/Di (k) = χk[D/Di] − χk =
( ∑

0≤κ≤pn−1
pi|κ

λDκ
)
− λD0 =

∑
1≤κ≤pn−1

pi|κ

λDκ ,

where the second equality holds by Lemma 4.5(b).
�

Proposition 4.7. Let W := ΩD/Di(0)
◦ΩD/Di(1)

◦ · · · ◦ΩD/Di(s)(k) be an indecomposable capped

endo-permutation kD-module, where s ≥ 0 and 0 ≤ i(0) < i(1) < · · · < i(s) ≤ n− 1 are integers
and we set s = −1 if W = k. Then, in the Grothendieck ring of KD, the ordinary K-character
afforded by the lift of determinant 1 of W is

χW =
s∑
j=0

(−1)j
( ∑

0≤κ≤pn−1
pi(j)|κ

λDκ

)
+ (−1)s+1λD0 .

Proof. We proceed by induction on s. If s = −1, then W = k = M1 = MD/Dn , hence χW = λD0
by Lemma 4.5. If s = 0, then W = ΩD/Di(0)

(k) and by Lemma 4.6 we have

χW =
∑

1≤κ≤pn−1
pi(0)|κ

λDκ =
( ∑

0≤κ≤pn−1
pi(0)|κ

λDκ
)
− λD0 .

Hence the formula holds for s = −1 and s = 0. So let us assume that s ≥ 1 and set

W ′ := ΩD/Di(1)
◦ · · · ◦ ΩD/Di(s)(k)

r(W ′) = dimk(W ′). Because i(0) < i(1) < · · · < i(s) ≤ n− 1, we have 1 ≤ r(W ′) ≤ pn−i(0) − 1,
hence

W = ΩD/Di(0)
(W ′) = M|D/Di(0)|−r(W ′)

by Lemma 4.6(a). Now, by Lemma 4.6(c) and (b) (applied inductively), we obtain that

ΩD/Di(1)
◦ · · · ◦ ΩD/Di(s)(O) =: W̃ ′
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is the unique lift of determinant 1 of W ′ and by the induction hypothesis

χW ′ =

s∑
j=1

(−1)j+1
( ∑

0≤κ≤pn−1
pi(j)|κ

λDκ

)
+ (−1)sλD0 .

Again, by Lemma 4.6(b), ΩD/Di(0)
(W̃ ′) is the unique lift of determinant 1 of ΩD/Di(0)

(W ′) =W.

Hence in the Grothendieck ring of KD, we have

χW = χM|D/Di(0)|
− χW ′ =

∑
0≤κ≤pn−1
pi(0)|κ

λDκ −
( s∑
j=1

(−1)j
( ∑

0≤κ≤pn−1
pi(j)|κ

λDκ

)
+ (−1)sλD0

)

=
s∑
j=0

(−1)j
( ∑

0≤κ≤pn−1
pi(j)|κ

λDκ

)
+ (−1)s+1λD0 .

�

4.3. Characters of the Morita correspondents. We can now proceed to describe the K-
characters of the Morita correspondents of the trivial source c-modules under the character
bijection ΓK of §2.7.

Throughout this subsection we fix a vertex Di ≤ D with 1 ≤ i ≤ n and we denote by ρ(i,W )

for the K-character afforded by the unique lift of determinant 1 of the indecomposable capped
endo-permutation kDi-module Cap ◦ResDDi(W ).

Lemma 4.8. Let M be the unique trivial source c-module with vertex 1 < Di ≤ D and let ψM
denote the K-character afforded by its trivial source lift. Then

Γ−1
K (ψM ) = IndDDi(ρ(i,W )) .

Proof. Follows directly from Lemma 2.3 and the definition of the character bijection ΓK of §2.7.
�

Lemma 4.9. Let 1 ≤ i ≤ n and let W := ΩDi/Di(0)
◦ · · · ◦ ΩDi/Di(t)(k), where t ≥ 0 and

0 ≤ i(0) < i(1) < · · · < i(t) ≤ i− 1 are integers. Then:

(a) W =
∑t

j=0(−1)j IndDiDi(j)(k) + (−1)t+1k in the Grothendieck ring of kDi; and

(b) IndDDi(W) =
∑t

j=0(−1)j IndDDi(j)(k) + (−1)t+1 IndDDi(k) in the Grothendieck ring of kD.

Moreover, in the Grothendieck ring of KD,

IndDDi(χW) =

t∑
j=0

(−1)j
( ∑

0≤κ≤pn−1
pi(j)|κ

λDκ

)
+ (−1)t+1

( ∑
0≤κ≤pn−1

pi|κ

λDκ

)
.

Proof. First we note that W is an indecomposable capped endo-permutation kDi-module.

(a) We proceed by induction on t. If t = 0, then considering a Di(0)-relative projective cover
of the trivial module

0 ΩD/Di(k) IndDiDi(0)
(k) k 0
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yields W = IndDiDi(0)
(k)− k, as required. Now, given t > 1, we may decompose

W = ΩDi/Di(0)

[
ΩDi/Di(1)

◦ · · · ◦ ΩDi/Di(t)(k)
]

= PDi/Di(0)

[
ΩDi/Di(1)

◦ · · · ◦ ΩDi/Di(t)(k)
]
−
[
ΩDi/Di(1)

◦ · · · ◦ ΩDi/Di(t)(k)
]
.

As dimk

(
ΩDi/Di(1)

◦ · · · ◦ ΩDi/Di(t)(k)
)
< |Di/Di(0)|, we have

PDi/Di(0)

[
ΩDi/Di(1)

◦ · · · ◦ ΩDi/Di(t)(k)
]

= PDi/Di(0)
(k)

and the the induction hypothesis yields

W = PDi/Di(0)
(k)−

[ t∑
j=1

(−1)j+1 IndDiDi(j)(k) + (−1)tk
]

=

t∑
j=0

(−1)j IndDiDi(j)(k) + (−1)t+1k

(b) It follows from (a) that

IndDDi(W) = IndDDi

( t∑
j=0

(−1)j IndDiDi(j)(k) + (−1)t+1k
)

=
t∑

j=0

(−1)j
(

IndDDi ◦ IndDiDi(j)(k)
)

+ (−1)t+1 IndDDi(k)

=

t∑
j=0

(−1)j IndDDi(j)(k) + (−1)t+1 IndDDi(k)

The last claim is now a direct consequence of Lemma 4.5(b). �

Proposition 4.10. Let W = W (0 < i0 < i1 < . . . < is < n) be the indecomposable capped
endo-permutation module parametrizing the source algebra of the block B. Let M be the unique
trivial source c-module with vertex Di and let ψM denote the K-character afforded by its trivial
source lift to O. Then

Γ−1
K (ψM ) =

t(i)∑
j=0

(−1)j
( ∑

0≤κ≤pn−1

pij |κ

λDκ

)
+ (−1)t(i)+1

( ∑
0≤κ≤pn−1

pi|κ

λDκ

)
,

where t(i) := max{0 ≤ j ≤ s | ij ≤ i− 1} if W � k and t(i) := −1 if W = k.

Proof. By Lemma 4.8, Γ−1
K (ψM ) = IndDDi(ρ(i,W )), where ρ(i,W ) is the K-character of the lift of

determinant 1 of the indecomposable capped endo-permutation kDi-module Cap ◦ResDDi(W ).
By [HL19, §4.5], we have

Cap ◦ResDDi (W ) = Ωa0

Di/D0
◦ Ωa1

Di/D1
◦ · · · ◦ Ω

ai−1

Di/Di−1
(k)

= ΩDi/Di0
◦ · · · ◦ ΩDi/Dit

(k) ,
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where t := t(i). Therefore it follows from Lemma 4.9(b) that

Γ−1
K (ψM ) = IndDDi(ρ(i,W )) =

t(i)∑
j=0

(−1)j
( ∑

0≤κ≤pn−1

pij |κ

λDκ

)
+ (−1)t(i)+1

( ∑
0≤κ≤pn−1

pi|κ

λDκ

)
.

�

5. Step 2: Characters of the trivial source b-modules

Throughout this section, we assume W = W (0 < i0 < i1 < . . . < is < n) according to
Notation 2.2 is the indecomposable capped endo-permutation module parametrizing the source
algebra of the block B. We let 1 < Di ≤ D (1 ≤ i ≤ n) be a fixed vertex and we set
t(i) := max{0 ≤ j ≤ s | ij ≤ i− 1} if W � k and t(i) := −1 when W = k.

First we recover the characters of the trivial source c-modules.

Lemma 5.1. Let M be the unique trivial source c-module with vertex Di and let ψM denote the
K-character afforded by its trivial source lift to O. Then

ψM =

t(i)∑
j=0

(−1)j
( ∑

0≤κ≤pn−1

pij |κ

ψλDκ

)
+ (−1)t(i)+1

( ∑
0≤κ≤pn−1

pi|κ

ψλDκ

)

=

t(i)∑
j=0

(−1)j
( ∑

1≤κ≤pn−1

pij |κ

ψλDκ

)
+ (−1)t(i)+1

( ∑
1≤κ≤pn−1

pi|κ

ψλDκ

)
+ d(W,Di)ψλD0

,

where d(W,Di) := 0 if t(i) is even and d(W,Di) := 1 if t(i) is odd.

Proof. Applying ΓK to the formula in Proposition 4.10 yields the first equality. The second
equality is straightforward, indeed, we only write the unique non-exceptional character ψλD0

in

a separate summand. �

Next we need to induce the above characters in turn to the stabiliser T (c) and then N1 in
order to compute the K-characters of the trivial source b′-modules and b-modules.

Remark 5.2. Recall that we write IrrK(c) = {ψλDκ | 1 ≤ κ ≤ pn − 1}. Then the following

assertions follow from Clifford-theoretic arguments (see [Alp86, §19]):

(1) For ψλD0
, the unique non-exceptional character of c, we have

Ind
T (c)
CG(D1)(ψλD0

) = ψ̃1 + . . .+ ψ̃e ,

where {ψ̃1, . . . , ψ̃e} = Irr′(b′) (each ψ̃j extends ψλD0
);

(2) Ind
T (c)
CG(D1)(ψλDκ ) =: ψ̃λDκ ∈ IrrEx(b′) for each exceptional character ψλDκ ∈ IrrEx(c);

(3) Irr′(b) = {θ1, . . . , θe} where θj := IndN1

T (c)(ψ̃j) for each 1 ≤ j ≤ e and

IndN1

T (c)(ψ̃λDκ ) =: θλDκ ∈ IrrEx(b) for each 1 ≤ κ ≤ pn − 1

as the theorem of Fong-Reynolds gives a source-algebra equivalence between b′ and b
induced by induction from T (c) to N1. (See [KKW04, 1.5.Theorem].)
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(4) Let E be the inertial quotient of B. This is a cyclic subgroup of order e of NG(D)/CG(D),
hence acts by inner automorphisms on D = 〈u〉 and embeds as a subgroup of Aut(D) ∼=
(Z/pnZ)×. Hence, writing E = 〈h̄〉 with h ∈ NG(D), there exists ā ∈ (Z/pnZ)× of order
e such that

h−1uh = ua ,

where 0 ≤ a < pn is coprime to p since e | p− 1, so that the group E acts by conjugation
on IrrEx(D) via

(λDκ )h̄(u) = λDκ (h−1uh) = λDκ (ua) = ζκa = λDκa(u) .

Hence (λDκ )h̄
α

= λDκaα and each orbit has length e. Therefore, fixing a set of representa-
tives of the orbits of this action, say {λκ(r) | 1 ≤ r ≤ m} =: Λ (where m is the exceptional
multiplicity of B), we may rewrite

IrrEx(D) =

m⊔
r=1

{λDκ(r)aα | 0 ≤ α ≤ e− 1} ,

where λDκ(r,α) : D −→ K×, u 7→ ζκ(r)aα . It follows that

Ind
T (c)
CG(D1)(ψλDκ(r)aα

) = Ind
T (c)
CG(D1)(ψλD

κ(r′)aα′
) ⇐⇒ r = r′ ,

thus we may set

θλκ(r)
:= IndN1

CG(D1)(ψλDκ(r)aα
) for each 1 ≤ r ≤ m, 0 ≤ α ≤ e− 1 ,

so that by the above IrrEx(b) = {θλκ(r)
| 1 ≤ r ≤ m} = {θλ | λ ∈ Λ} .

Corollary 5.3. Let 1 < Di ≤ D be as above. Let Y1, . . . , Ye be the e pairwise non-isomorphic
trivial source b-modules with vertex Di. For each 1 ≤ x ≤ e let χYx = ΨYx + ΞYx be the K-
character afforded by the trivial source lift of Yx to O (see Notation 3.3). Then the following
assertions hold:

(a) if t(i) is odd, then without loss of generality we may assume that we have chosen the
labelling such that ΨYx = θx, whereas ΨYx = 0 if t(i) is even; and

(b)

ΞYx =

t(i)∑
j=0

(−1)j
( ∑

1≤r≤m
pij |κ(r)

θλκ(r)

)
+ (−1)t(i)+1

( ∑
1≤r≤m
pi|κ(r)

θλκ(r)

)
.

Proof. First assume that Y1, . . . , Ye are hooks. Then by [HL19, Corollary 5.2(c)], we must have
W = k and Di = Dn and Y1, . . . , Ye are precisely the simple b-modules. (This is because the
simple b-modules are hooks since σ(b) is a star with e edges and exceptional vertex at its centre,
and moreover D1 acts trivially on them, hence they are trivial source modules.) In consequence,
we may assume that we have chosen the labelling such that χYx = θx = ΨYx and ΞYx = 0 for
each 1 ≤ x ≤ e. Hence (a) and (b) hold in this case.

We may now assume that Y1, . . . , Ye are not hooks. If M denotes the unique trivial source
c-module with vertex Di, then by Clifford theory

Ind
T (c)
CG(D1)(M) = M1 ⊕ · · · ⊕Me

is the direct sum of the e pairwise non-isomorphic trivial source b′-modules with vertex Di and

IndN1

CG(D1)(M) = Y1 ⊕ · · · ⊕ Ye with Yj = IndN1

T (c)(Mj) ∀ 1 ≤ j ≤ e (w.l.o.g.)
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is the direct sum of the e pairwise non-isomorphic trivial source b-modules with vertex Di. At
the level of K-characters, we obtain from Lemma 5.1 and Remark 5.2 that

IndN1

CG(D1)(ψM ) =

t(i)∑
j=0

(−1)j
( ∑

1≤κ≤pn−1

pij |κ

IndN1

CG(D1)(ψλDκ )
)

+ (−1)t(i)+1
( ∑

1≤κ≤pn−1
pi|κ

IndN1

CG(D1)(ψλDκ )
)

+ d(W,Di) IndN1

CG(D1)(ψλD0
)

=

t(i)∑
j=0

(−1)je
( ∑

1≤r≤m
pij |κ(r)

θλκ(r)

)
+(−1)t(i)+1e

( ∑
1≤r≤m
pi|κ(r)

θλκ(r)

)
+d(W,Di)(θ1 + . . .+ θe) .

As by Lemma 3.4 we have ΞY1 = . . . = ΞYe and the multiplicity of each irreducible constituent
of this character is one, we have

ΞYx =

t(i)∑
j=0

(−1)j
( ∑

1≤r≤m
pij |κ(r)

θλκ(r)

)
+ (−1)t(i)+1

( ∑
1≤r≤m
pi|κ(r)

θλκ(r)

)

for each 1 ≤ x ≤ e. �

Remark 5.4. According to Janusz’ classification of the indecomposable modules in blocks with
cyclic defect groups [Jan69] a non-simple trivial source b-module Yx (1 ≤ x ≤ e) as in Corol-
lary 5.3 can only correspond to paths on the Brauer tree σ(b) of the form

θx θΛ

#
Sx //  
Sx

oo

or of the form

θx1

#
Sx1

$$
χΛ

 

Sx2xx
#
θx2

because σ(b) is a star with exceptional vertex at its center. Therefore, if e > 1, it is a priori
clear that any lift of Yx affords a K-character of the form dxθx + θΛ′ for some dx ∈ {0, 1} and
some Λ′ ⊆ Λ. See [HL19, Theorem A.1].

Now, if e > 1, then a trivial source b-module Yx with ΨYx = θx corresponds to a path of the
first type and if ΨYx = 0, then Yx corresponds to a path of the second type. See [HL19, Theorem
A.1]. If e = 1 only the first type of paths exist. In this case Corollary 5.3 tells us whether θx
occurs as a constituent in χYx or not.
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6. Step 3: From b to B, the exceptional constituents

For the passage from b to B, we first need to describe the labelling of the exceptional K-
characters of B which we will use in the sequel. Recall that we write Irr′(b) = {θ1, . . . , θe} and
IrrEx(b) = {θλ | λ ∈ Λ}, where

Λ = {λκ(r) | 1 ≤ r ≤ m}
is defined in Remark 5.2. Moreover, we write Irr′(B) = {χ1, . . . , χe}, where we may assume that
for each 1 ≤ x ≤ e, χx is the K-character of the Green correspondent in B of the simple b-module
Sx affording the K-character θx. Then the standard labelling of the exceptional characters of B
is achieved as follows: if ∆ : Z Irr(b) −→ Z Irr(B) denotes the homomorphism of abelian groups
induced by the functor 1B̃ · IndGN1

, there exists a sign δ ∈ {±1} and {χλ | λ ∈ Λ} such that for
all pairs λ, λ′ ∈ Λ, we have

∆(θλ − θλ′) = δ(χλ − χλ′) .
By [Lin18, Theorems 11.10.2(ii)] this yields the existence of a perfect isometry

I : Z Irr(b) −→ Z Irr(B)

sending each θx ∈ Irr′(b) to I(θx) = δ(θx)χx with δ(θx) ∈ {±1} and each θλ ∈ IrrEx(b) to
I(θλ) = δχλ with δ ∈ {±1} independent of λ ∈ Λ.

Remark 6.1. By results of Rickard and Rouquier, see [Lin18, Theorem 11.12.1], there is a 2-term
splendid Rickard complex

M• : 0→ N →M → 0

of (B,b)-bimodules, where N and M are in degrees −1 and 0 respectively, M := 1B·kG·1b,
and N is a certain direct summand of the projective cover of M as (B,b)-bimodule. Thus, by
[Lin18, Corollary 9.3.3], the complex M• induces another perfect isometry

I : ZIrr(b)→ ZIrr(B)

such that on the one hand for each θ ∈ Irr(b), we have I(θ) = ε(θ)χ for a certain χ ∈ Irr(B)
and a sign ε(θ) ∈ {±1}, and on the other hand

(1) I(θ) = (χM − χN )⊗Kb θ

for every θ ∈ ZIrr(b). Moreover, because I and I are two perfect isometries, in fact it follows
from [Lin18, Theorems 11.1.12 and 11.10.2(ii)] that I sends the non-exceptional characters
θx ∈ Irr′(b) to I(θx) = ε(θx)χx for each 1 ≤ x ≤ e and the exceptional characters θλ ∈ IrrEx(b)
to

I(θλ) = ε · χλ
where ε := ε(θλ(1)) = . . . = ε(θλ(m)).

Lemma 6.2. Let χ be a K-character of G afforded by an OG-lattice which is a lift of an
indecomposable B-module X. Furthermore, suppose that there exist a subset Λ′ of Λ, a sign
ε ∈ {±1} and integers α1, · · · , αe, β ∈ Z such that

χ =

e∑
x=1

αxχx + βχΛ + εχΛ′ .

Then, either

χ =

e∑
x=1

αxχx + χΛ′ or χ =

e∑
x=1

αxχx + χΛ\Λ′ .

(See Notation 3.3.)
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Proof. We have

χ =

e∑
x=1

αxχx + βχΛ + εχΛ′ =

e∑
x=1

αxχx +
∑

λ∈Λ\Λ′
βχλ +

∑
λ∈Λ′

(β + ε)χλ.

Since (Λ \ Λ′) ∩ Λ′ = ∅ and 〈χ, χλ〉G ∈ {0, 1} for each λ ∈ Λ, we have that β, β + ε ∈ {0, 1} (see
Notation 3.3). Hence β = 1− ε. Therefore, ε = 1 yields χ =

∑e
x=1 αxχx +χΛ′ , whereas ε = −1

yields χ =
∑e

x=1 αxχx + χΛ\Λ′ . �

Proposition 6.3. Let Y be a non-projective trivial source b-module and let X := f−1(Y ) be its
Green correspondent in B. Write ΞY = θΛ′ with Λ′ ⊆ Λ for the exceptional part of χY . Then
the exceptional part of χX is

ΞX = χΛ′ or ΞX = χΛ\Λ′ .

Proof. According to Remark 5.4, we may write ΨY = d0θx0 for some 1 ≤ x0 ≤ e and some
d0 ∈ {0, 1}, so that χY = d0θx0 + θΛ′ . Then, it follows from Remark 6.1 that

(χM − χN )⊗Kb χY = I(χY ) = I(d0θx0 + θΛ′)

= I
(
d0θx0 +

∑
λ∈Λ′

θλ′
)

= ε(θx0)d0χx0
+
∑
λ∈Λ′

εχλ′

= ε(θx0)d0χx0
+ εχΛ′

Now, on the one hand, as M induces a stable equivalence of Morita type between b and B, we
have

M ⊗b Y = X ⊕ (projective B-module).

Thus χM⊗bY = χX + Φ , where Φ is the character a projective B-module. By Lemma 3.1 we
can write

Φ =
e∑

x=1

αxχx + αχΛ

for non-negative integers α1, . . . , αe, α ∈ Z≥0. On the other hand, N is projective as a (B,b)-
bimodule, hence N ⊗b Y is a projective left B-module. Thus again by Lemma 3.1 we can
write

χN =
e∑

x=1

βxχx + βχΛ

for non-negative integers β1, . . . , βe, β ∈ Z≥0. It follows that

(χM − χN )⊗Kb χY = (χM ⊗Kb χY )− (χN ⊗Kb χY ) = χX +

e∑
x=1

γxχx + (α− β)χΛ

for integers γ1, . . . , γe ∈ Z. Hence

χX +
e∑

x=1

γxχx + (α− β)χΛ = ε(θx0)d0χx0
+ εχΛ′

so that

χX = ε(θx0)d0χx0
+

n∑
x=1

(−γx)χx + (β − α)χΛ + εχΛ′
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and the claim follows from Lemma 6.2. �

Next, we count the number of exceptional constituents of the trivial source b-modules.

Lemma 6.4. Let Y be a non-projective trivial source b-module with vertex Di (1 ≤ i ≤ n).
Write ΨY = d0θx0 for some 1 ≤ x0 ≤ e and some d0 ∈ {0, 1} for the non-exceptional part of χY
and ΞY = θΛ′ with Λ′ ⊆ Λ for the exceptional part of χY . Then

|Λ′| = `i · pn−i − d0

e
and |Λ \ Λ′| = m− `i · pn−i − d0

e
.

Proof. On the one hand, because the multiplicity of each irreducible constituent of ΞY is one,
we have that

|Λ′| = 〈ΞY ,ΞY 〉G = 〈χY , χY 〉G − d0 .

Now, reduction modulo p of θx0 yields one simple constituent of Y and for each λ ∈ Λ′ reduction
modulo p of θλ yields e simple constituents of Y , hence reduction modulo p of χY = d0θx0 + θΛ′

yields
`(Y ) = d0 + e|Λ′|

as b is uniserial. On the other hand, as trivial source b-modules and trivial source c-modules
with vertex Di have the same length (see [HL19, Corollary 4.5]) and c is Morita equivalent to
kD, it follows from Lemma 2.3 that the length of Y is

`(Y ) = `(UDi(W )) = dimk(UDi(W )) .

Therefore

|Λ′| = dimk(UDi(W ))− d0

e
and |Λ \ Λ′| = m− dimk(UDi(W ))− d0

e

and the claim follows from the fact that dimk(UDi(W )) = `i · pn−i. �

7. Step 4: Characters of the trivial source modules at the level of G

We can now state our main result. Note that in this section the indecomposable B-modules
are expressed in terms of their path, direction and multiplicity, as introduced in §2.4.

Theorem 7.1. Let B be a block with non-trivial cyclic defect group D, inertial index e, and
exceptional multiplicity m > 1. Let W = W (0 < i0 < i1 < . . . < is < n) be the endo-permutation
kD-module parametrizing the source algebra of B. Let X be a trivial source B-module with vertex
Di (1 ≤ i ≤ n). Set

Ξ(W, i) :=

t(i)∑
j=0

(−1)j
( ∑

1≤r≤m
pij |κ(r)

χλκ(r)

)
+ (−1)t(i)+1

( ∑
1≤r≤m
pi|κ(r)

χλκ(r)

)

and

Ξ(W, i) :=

t(i)∑
j=0

(−1)j
( ∑

1≤r≤m
pij -κ(r)

χλκ(r)

)
+ (−1)t(i)+1

( ∑
1≤r≤m
pi-κ(r)

χλκ(r)

)
,

where t(i) := max{0 ≤ j ≤ s | ij ≤ i− 1} if W � k and t(i) := −1 if W = k.
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(a) If e = 1 and the Brauer tree of B is σ(B) =
χ1

#
χΛ

 
S1 , then the following assertions

hold:
(i) χX = d0χ1 + Ξ(W, i) in case χ1 > 0, and

(ii) χX = (1− d0)χ1 + Ξ(W, i) in case χ1 < 0,
where d0 = 1 if t(i) is odd and d0 = 0 if t(i) is even.

(b) If e > 1, then the following assertions hold.
(1) If the vertex is Di = D and W = k, then X is a hook and there exists χ ∈ Irr◦(B)

such that χ > 0 and χX = χ.

(2) If X corresponds to the path

χx0
χx1

χx
l

χΛ

#
E1 // #
Es

oo #
El+1 //  
El+2

oo

where the direction is ε = (1,−1), l ≥ 0, and χx0
is a leaf of σ(B), then:

(i) χX =
∑l

z=0 χz + Ξ(W, i) in case l is odd, χx0
> 0, e | (`i · pn−i − 1) and the

multiplicity 2 ≤ µ ≤ m of X is given by µ = m+ 1− `i·pn−i−1
e ;

(ii) χX =
∑l

z=0 χz + Ξ(W, i) in case l is even, χx0
> 0, e | (`i · pn−i − 1) and the

multiplicity 2 ≤ µ ≤ m of X is given by µ = `i·pn−i−1
e + 1;

(iii) χX =
∑l

z=0 χz + Ξ(W, i) in case l is odd, χx0
< 0, e | `i and the multiplicity

2 ≤ µ ≤ m of X is given by µ = `i·pn−i
e + 1;

(iv) χX =
∑l

z=0 χz + Ξ(W, i) in case l is even, χx0
< 0, e | `i and the multiplicity

2 ≤ µ ≤ m of X is given by µ = m+ 1− `i·pn−i
e .

(3) If X corresponds to the path

χx0
χΛ

#
E1 //  
E2

oo

where the direction is ε = (−1, 1) and χΛ is a leaf of σ(B), then:

(i) χX = Ξ(W, i) in case χΛ > 0, e | (`i · pn−i − 1) and the multiplicity 2 ≤ µ ≤
m− 1 of X is given by µ = m− `i·pn−i−1

e ;
(ii) χX = Ξ(W, i) in case χΛ < 0, e | `i and the multiplicity 2 ≤ µ ≤ m− 1 of X

is given by µ = `i·pn−i
e .

(4) If X corresponds to the path

χx0
χx1

χx
l

χΛ

# #
E1 //

Es
oo #

Es−1

oo #
El+1 //  
El+2

oo

where l ≥ 0, the successor of E1 around χx0
is Es, the direction is ε = (1, 1), then:

(i) χX =
∑l

z=0 χz + Ξ(W, i) in case l is odd, χx0
> 0, e | (`i · pn−i − 1) and the

multiplicity 2 ≤ µ ≤ m of X is given by µ = m+ 1− `i·pn−i−1
e ;

(ii) χX =
∑l

z=0 χz + Ξ(W, i) in case l is even, χx0
> 0, e | (`i · pn−i − 1) and the

multiplicity 2 ≤ µ ≤ m of X is given by µ = `i·pn−i−1
e + 1;
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(iii) χX =
∑l

z=0 χz + Ξ(W, i) in case l is odd, χx0
< 0, e | `i and the multiplicity

2 ≤ µ ≤ m of X is given by µ = `i·pn−i
e + 1;

(iv) χX =
∑l

z=0 χz + Ξ(W, i) in case l is even, χx0
< 0, e | `i and the multiplicity

2 ≤ µ ≤ m of X is given by µ = m+ 1− `i·pn−i
e .

(5) If X corresponds to the path

χx0
χx1

χx
l

χΛ

#
E1 // #

E2 // #
Es

oo #
El+2 //  
El+3

oo

where l ≥ 0, the successor of E1 around χx0
is Es, the direction is ε = (−1,−1),

then:

(i) χX =
∑l

z=0 χz + Ξ(W, i) in case l is odd, χx0
> 0, e | (`i · pn−i − 1) and the

multiplicity 2 ≤ µ ≤ m of X is given by µ = m+ 1− `i·pn−i−1
e ;

(ii) χX =
∑l

z=0 χz + Ξ(W, i) in case l is even, χx0
> 0, e | (`i · pn−i − 1) and the

multiplicity 2 ≤ µ ≤ m of X is given by µ = `i·pn−i−1
e + 1;

(iii) χX =
∑l

z=0 χz + Ξ(W, i) in case l is odd, χx0
< 0, e | `i and the multiplicity

2 ≤ µ ≤ m of X is given by µ = `i·pn−i
e + 1;

(iv) χX =
∑l

z=0 χz + Ξ(W, i) in case l is even, χx0
< 0, e | `i and the multiplicity

2 ≤ µ ≤ m of X is given by µ = m+ 1− `i·pn−i
e .

(6) If X corresponds to the path

#
E1

##
χx0

χx1
χx
l

χΛ

#

Esxx

E2 // #
Es−1

oo #
El+2 //  
El+3

oo

#

where l ≥ 0, the successor of E1 around χx0
is Es, the direction is ε = (−1, 1), then:

(i) χX =
∑l

z=0 χz + Ξ(W, i) in case l is odd, χx0
> 0, e | (`i · pn−i − 1) and the

multiplicity 2 ≤ µ ≤ m of X is given by µ = m+ 1− `i·pn−i−1
e ;

(ii) χX =
∑l

z=0 χz + Ξ(W, i) in case l is even, χx0
> 0, e | (`i · pn−i − 1) and the

multiplicity 2 ≤ µ ≤ m of X is given by µ = `i·pn−i−1
e + 1;

(iii) χX =
∑l

z=0 χz + Ξ(W, i) in case l is odd, χx0
< 0, e | `i and the multiplicity

2 ≤ µ ≤ m of X is given by µ = `i·pn−i
e + 1;

(iv) χX =
∑l

z=0 χz + Ξ(W, i) in case l is even, χx0
< 0, e | `i and the multiplicity

2 ≤ µ ≤ m of X is given by µ = m+ 1− `i·pn−i
e .
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(7) If X corresponds to the path

#
E1

$$
χΛ

 

E2xx
#

where the successor of E1 around χΛ is E2 and the direction is ε = (−1, 1), then:

(i) χX = Ξ(W, i) in case χΛ > 0, e | (`i · pn−i − 1) and the multiplicity 1 ≤ µ ≤
m− 1 of X is given by µ = m− `i·pn−i−1

e ;
(ii) χX = Ξ(W, i) in case χΛ < 0, e | `i and the multiplicity 1 ≤ µ ≤ m− 1 of X

is given by µ = `i·pn−i
e .

In all drawings of the paths, the vertices χx0
, . . . , χxl ∈ Irr′(B).

Remark 7.2. To simplify, we say that the trivial source module X has type (2) (resp. (3), (4),
(5), (6), (7)) if X corresponds to a path of type (2), (resp. (3), (4), (5), (6), (7)) in the
statement of Theorem 7.1(b). We also note that this labelling agrees with the labelling of [HL19,
Theorem 5.3].

Proof. We shall go through the classification of the trivial source B-modules with vertex Di

provided by [HL19, Theorem 5.3]. Let Y := f(X) be the Green correspondent of X in b. Write
ΨY = d0θx0 for some 1 ≤ x0 ≤ e and some d0 ∈ {0, 1} for the non-exceptional part of χY and
ΞY = θΛ′ with Λ′ ⊆ Λ for the exceptional part of χY .

For each module occurring in [HL19, Theorem 5.3], we determine both the non-exceptional
part ΨX and the exceptional part ΞX of χX from χY as follows.

(a) If e = 1, then B is uniserial and there is a unique trivial source B-module X with
vertex Di. Also, more precisely, χY = d0θ1 + χΛ′ and χX must also have the form
χX = d′0χ1 + ΞX for some d′0 ∈ {0, 1}. Hence,

`(Y ) = d0 + |Λ′| and `(X) = d′0 + 〈ΞX ,ΞX〉G .
By Proposition 6.3, either ΞX = χΛ′ or ΞX = χΛ\Λ′ , hence 〈ΞX ,ΞX〉G ∈ {|Λ′|,m− |Λ′|}.
Now, by [HL19, Theorem 5.3(a)] there are two cases to distinguish for X.
· Case 1: χ1 > 0. Then, it follows from [HL19, Theorem 5.3(a) and its proof] that

`(Y ) = `(X) = `i · pn−i .
By the above, the only possibility is ΞX = χΛ′ and d′0 = d0, i.e. ΨX = d0χ1.
· Case 2: χ1 < 0. Then by [HL19, Theorem 5.3(a) and its proof],

`(Ω(Y )) = `(X) = pn − `i · pn−i .
Now, as the unique PIM of b affords the character θ1 + θΛ, the cotrivial source
module Ω(Y ) affords the character

χΩ(Y ) = (1− d0)θ1 + θΛ\Λ′

and it follows that the only possibility is ΞX = χΛ\Λ′ and d′0 = 1 − d0, i.e. ΨX =

(d0 − 1)χ1.
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Now, by Corollary 5.3(b), χΛ′ = Ξ(W, i), whereas χΛ\Λ′ = Ξ(W, i). By Corollary 5.3(a)

yields d0 = 1 if t(i) is odd and d0 = 0 if t(i) is even.

(b) We can now go through the classification of the trivial source B-modules with vertex Di

provided by [HL19, Theorem 5.3(b)]. To begin with, if X has vertex D and W = k, then
X is a hook and the claim follows from Lemma 3.1.
Thus, from now on we assume that X has type (2), (3), (4), (5), (6) or (7). First of
all, in all cases the non-exceptional part ΨX of χX is given by [HL19, Theorem A.1(d)],

namely ΨX =
∑l

z=0 χz if X is of type (2), (4), (5) or (6), whereas ΨX = 0 if X is of
type (3) or (7). Therefore, it remains to compute the exceptional part ΞX of χX . Now,
[HL19, Theorem A.1(d)] also provides us with the number of constituents of ΞX , namely

〈ΞX ,ΞX〉G =

{
µ− 1 if X corresponds to a path of type (2), (4), (5) or (6);

µ if X corresponds to a path of type (3) or (7).

Let Y := f(X) be the Green correspondent of X in b. Write ΨY = d0θx0 for some
1 ≤ x0 ≤ e and some d0 ∈ {0, 1} for the non-exceptional part of χY and ΞY = θΛ′ with
Λ′ ⊆ Λ for the exceptional part of χY . By Lemma 6.4, the number of constituents of ΞY
is

|Λ′| = `i · pn−i − d0

e
.

Now, by Proposition 6.3 there are two possibilities for ΞX . First, ΞX = χΛ′ if and only
if 〈ΞX ,ΞX〉G = |Λ′|. Hence by the above

ΞX = χΛ′ ⇔ µ =

{
`i·pn−i−d0

e + 1 if X is of type (2), (4), (5) or (6);
`i·pn−i−d0

e if X is of type (3) or (7).

Second, ΞX = χΛ\Λ′ if and only if 〈ΞX ,ΞX〉G = |Λ \ Λ′| = m− |Λ′|. Hence by the above

ΞX = χΛ\Λ′ ⇔ µ =

{
m+ 1− `i·pn−i−d0

e if X is of type (2), (4), (5) or (6);

m− `i·pn−i−d0

e if X is of type (3) or (7).

In addition, by Corollary 5.3(b), χΛ′ = Ξ(W, i), whereas χΛ\Λ′ = Ξ(W, i). Finally, we

note that by Corollary 5.3(a), we have d0 = 1 if and only if t(i) is even, which by
construction happens if and only if e | (`i · pn−i − d0) and d0 = 0 if and only if t(i) is
odd, which by construction happens if and only if e | `i.
This data together with the classification theorem [HL19, Theorem 5.3(b)] yields the
following form for ΞX .

1. Types (2), (4), (5) and (6) all work identically. By [HL19, Theorem 5.3(b)] there
are four cases to distinguish.

Case 1: X is such that l is odd, χx0
> 0, e | (`i · pn−i − 1) and the multiplicity

2 ≤ µ ≤ m of X is given by µ = m+ 1− `i·pn−i−1
e .

In this case it follows from the above that d0 = 1 and ΞX = χΛ\Λ′ = Ξ(W, i).

Case 2: X is such that l is even, χx0
> 0, e | (`i · pn−i − 1) and the multiplicity

2 ≤ µ ≤ m of X is given by µ = `i·pn−i−1
e + 1.

In this case it follows from the above that d0 = 1 and ΞX = χΛ′ = Ξ(W, i).
Case 3: X is such that l is odd, χx0

< 0, e | `i and the multiplicity 2 ≤ µ ≤ m of X

is given by µ = `i·pn−i
e + 1.

In this case it follows from the above that d0 = 0 and ΞX = χΛ′ = Ξ(W, i).
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Case 4: X is such that l is odd, χx0
< 0, e | `i and the multiplicity 2 ≤ µ ≤ m of X

is given by µ = m+ 1− `i·pn−i
e .

In this case it follows from the above that d0 = 0 and ΞX = χΛ\Λ′ = Ξ(W, i).

2. Type (3): By [HL19, Theorem 5.3(b)] there are two cases to distinguish.

Case 1: X is such that χΛ > 0, e | (`i · pn−i − 1) and the multiplicity 2 ≤ µ ≤ m− 1

of X is given by µ = m− `i·pn−i−1
e .

In this case it follows from the above that d0 = 1 and ΞX = χΛ\Λ′ = Ξ(W, i).

Case 2: X is such that χΛ < 0, e | `i and the multiplicity 2 ≤ µ ≤ m− 1 of X is given

by µ = `i·pn−i
e .

In this case it follows from the above that d0 = 0 and ΞX = χΛ′ = Ξ(W, i).

3. Type (7): By [HL19, Theorem 5.3(b)] there are two cases to distinguish.

Case 1: X is such that χΛ > 0, e | (`i · pn−i − 1) and the multiplicity 1 ≤ µ ≤ m− 1

of X is given by µ = m− `i·pn−i−1
e .

In this case it follows from the above that d0 = 1 and ΞX = χΛ\Λ′ = Ξ(W, i).

Case 2: X is such that χΛ < 0, e | `i and the multiplicity 1 ≤ µ ≤ m− 1 of X is given

by µ = `i·pn−i
e .

In this case it follows from the above that d0 = 0 and ΞX = χΛ′ = Ξ(W, i).

�

Remark 7.3. In [Tak12] M. Takahashi computed the ordinary characters afforded by Scott mod-
ules in groups with cyclic Sylow p-subgroups, where the inertial index of the principal block is
greater than one. Scott modules all belong to the principal block and correspond to paths of
the form

χx0
χx1

χxl
χΛ

#
k // #
k

oo #
El+1 //  
El+2

oo

with χx0
= 1G > 0 and E1 = Es = k. For the principal block, W = k, because it is isomorphic

to a source of the trivial kG-module. Hence `i = 1 and e | (pn−i − 1) for each 1 ≤ i ≤ n. Thus
the Scott module with vertex Di correspond to a module of type (2) in Theorem 7.1(b) with
χx0

> 0 and e | (pn−i − 1).

8. An example à la Dade

Dade [Dad66, §9] proves that all isomorphism classes of capped endo-permutation kD-module
on which D1 acts trivially arise for the module W parametrizing the source algebra of the
block B. We also note that all examples given by Dade in [Dad66, §9] are in the setting of
nilpotent blocks. Here we give such an example, where W � k. In such a case NG(D) 6=NG(D1)
and such examples are of particular interest because the two Brauer corresponding blocks of B
in NG(D1) and in NG(D) are not source algebra equivalent, although they are Morita equivalent.

Example 8.1 (See [Dad66, §9]). Let p := 3, let D := 〈u〉 be the cyclic group of order 32, and
let Q := 171+2

+ be the extra-special group of order 173 of exponent 17. Let G := Q o D be a
semi-direct product of Q by D, where D acts on Q in such a way that CD(Q) = D1. Then
[Z(Q), D] = 1 and Aut(Q) ∼= (C17 × C17)oGL2(17). Thus,

NG(D) = CG(D) = Z(Q)×D ∼= C17 ×D ,
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while G = NG(D1) = CG(D1) = QoD, so that B = b = c.
Computing in GAP4 [GAP], we see that this group has ninety-six 3-blocks of defect D1 and

seventeen 3-blocks of defect D. We let B be a non-principal 3-block of G with the defect group
D and

Irr(B) = {χ298, χ314, χ315, χ346, χ347, χ348, χ394, χ395, χ396} .
The values of these characters at 3-elements are given in the following table: where ζ ∈ K×

degree character 1a 3a 9a
17 χ1 := χ298 17 17 −1
17 χλ1

:= χ396 17 17ω −ζ
17 χλ2

:= χ348 17 17ω2 −ζ2

17 χλ3
:= χ315 17 17 −ζ3 = −ω

17 χλ4
:= χ395 17 17ω −ζ4

17 χλ5
:= χ347 17 17ω2 −ζ5

17 χλ6
:= χ314 17 17 −ζ6 = −ω2

17 χλ7
:= χ394 17 17ω −ζ7

17 χλ8
:= χ346 17 17ω2 −ζ8

is a primitive 9th root of unity and ω := ζ3 and χ1 is the unique non-exceptional character.
Furthermore, the labelling of the exceptional characters is obtained via the bijection ΓK of §2.7
using the generalised decomposition numbers of B = c according to [Thé95, (52.8)(a)].

Now, we compute the trivial source modules of B and their characters as follows. First, the
unique PIM of B is the projective cover P (S) of the simple module S, has length 9, and affords
the character χ1 + χΛ by Lemma 3.1(a).

Next we recall that the simple module S must be a hook of B, which affords the character χ1.
As χ1(3a) = 17 > 0, we have that χ1 > 0. Therefore, it follows from [HL19, Corollary 5.2(a)]
that the unique trivial source B-module with vertex D1 has length 32−1 = 3. Thus it must be
PD/D1

(S), the relative D1-projective cover of S.
Therefore, it remains to find the unique trivial source B-module X with vertex D. By [HL19,

Corollary 5.2(a)](b) we know that X has length dimk(W ) (where as usual W denotes the endo-
permutation kD-module parametrizing the source algebra of the block B). Since D is cyclic
of oder 9 and D1 acts trivially on W , there are in fact only two possibilities: W = k or W =
ΩD/D1

(k). As W is by definition a source of S, Lemma 2.1 excludes the case W = k, because
otherwise S would be a trivial source module contradicting the fact that χ1(9a) = −1 < 0.
Hence W = ΩD/D1

(k) and dimk(W ) = 2. It follows that X = ΩD/D1
(S) and has length 2.

Finally using the formulae of Theorem 7.1(a), we obtain that the trivial source B-modules
and their characters are given by the following table:

length module vertex character 1a 3a 9a
9 P (S) {1} χ1 + χΛ 9× 17 0 0
3 PD/D1

(S) D1 χ1 + χλ3
+ χλ6

3× 17 3× 17 0
2 ΩD/D1

(S) D2 = D χλ3
+ χλ6

2× 17 2× 17 1
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