
Chapter 1. Linear Representations of Finite Groups

Representation theory of finite groups is originally concerned with the ways of writing a finite group G

as a group of matrices, that is using group homomorphisms from G to the general linear group GL�pK q

of invertible � ˆ �-matrices with coefficients in a field K for some non-negative integer �.

Notation: throughout this chapter, unless otherwise specified, we let:

¨ G denote a finite group (in multiplicative notation);

¨ K denote a field of arbitrary characteristic; and

¨ V denote a K -vector space such that dimK pV q † 8 and GLpV q :“ AutK pV q its group of K -
automorphisms.

In general, unless otherwise stated, all groups considered are assumed to be finite and all K -vector
spaces considered are assumed to be finite-dimensional.

1 Linear Representations

Definition 1.1 (K -representation, matrix representation, faithfullness)

Let P Z•0 be a non-negative integer.

(a) A K -representation of G (or a (linear) representation of G (over K )) of degree � is a group
homomorphism

ρ : G ›Ñ GLpV q

where V is a K -vector space of dimension � P Z•0.

(b) A matrix representation of G over K of degree � is a group homomorphism R : G ›Ñ GL�pK q.

An injective (matrix) representation of G over K is called faithful.

Remark 1.2

We see at once that both concepts of a representation and of a matrix representation are closely
connected.
Recall that every choice of an ordered basis B of V yields a group isomorphism

7
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α
B

: GLpV q ›Ñ GL�pK q

� fiÑ p�qB

where p�qB denotes the matrix of � in the basis B. Therefore, a K -representation ρ : G ›Ñ GLpV q

together with the choice of an ordered basis B of V gives rise to a matrix representation of G:

G GLpV q

GL�pK q �

ρ

ö
RB :“α

B
˝ρ

α
B–

Explicitly, RB sends an element � P G to the matrix
`
ρp�q

˘
B

of ρp�q expressed in the basis B.
Another choice of a K -basis of V yields another matrix representation!!
It is also clear from the diagram that, conversely, any matrix representation R : G ›Ñ GL�pK q

gives rise to a K -representation ρ
B

:“ α
´1
B

˝ R of G.

Throughout the lecture, we will favour the approach using representations rather than matrix represen-
tations in order to develop theoretical results. However, matrix representations are essential to carry
out computations. Being able to pass back and forth from one approach to the other will be an essential
feature.

Also note that Remark 1.2 allows us to transfer terminology/results from representations to matrix
representations and conversely. Hence, from now on, in general we make new definitions for represen-
tations and use them for matrix representations as well.

Example 1

(a) If G is an arbitrary finite group and V :“ K , then

ρ : G ›Ñ GLpK q – K
ˆ

� fiÑ ρp�q :“ IdK Ø 1K

is a K -representation of G, called the trivial representation of G.
Similarly ρ : G ›Ñ GLpV q� � fiÑ IdV with dimK pV q “: � ° 1 is also a K -representation of G

and is called a trivial representation of G of degree �.

(b) If G is a subgroup of GLpV q, then the canonical inclusion

G ãÑ GLpV q

� fiÑ �

is a faithful representation of G, called the tautological representation of G.

(c) Let G :“ S� (� • 1) be the symmetric group on � letters. Let t�1� � � � � ��u be the standard
basis of V :“ K

�. Then
ρ : S� ›Ñ GLpK

�
q

σ fiÑ ρpσq : K
�

›Ñ K
�
� �� fiÑ �σp�q

is a K -representation, called the natural representation of S�.
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(d) More generally, if X is a finite G-set, i.e. a finite set endowed with a left action ¨ : GˆX ›Ñ X ,
and V is a K -vector space with basis t�� | � P Xu, then

ρ
X

: G ›Ñ GLpV q

� fiÑ ρ
X

p�q : V ›Ñ V � �� fiÑ ��¨�

is a K -representation of G, called the permutation representation associated with X .

Notice that (c) is a special case of (d) with G “ S� and X “ t1� 2� � � � � �u.
If X “ G and the left action ¨ : G ˆ X ›Ñ X is just the multiplication in G, then

ρ
X

“: ρreg

is called the regular representation of G.

We shall see later on in the lecture that K -representations are a special case of a certain algebraic

structure (in the sense of the lecture Algebraische Strukturen). Thus, next, we define the notions that
shall correspond to a homomorphism and an isomorphism of this algebraic structure.

Definition 1.3 (Homomorphism of representations, equivalent representations)

Let ρ1 : G ›Ñ GLpV1q and ρ2 : G ›Ñ GLpV2q be two K -representations of G, where V1� V2 are
two finite-dimensional K -vector spaces.

(a) A K -homomorphism α : V1 ›Ñ V2 such that ρ2p�q ˝ α “ α ˝ ρ1p�q for each � P G is called a
homomorphism of representations (or a G-homomorphism) between ρ1 and ρ2.

V1 V1

V2 V2

ρ1p�q

α ö α

ρ2p�q

(b) If, moreover, α is a K -isomorphism, then it is called an isomorphism of representations (or a
G-isomorphism), and the K -representations ρ1 and ρ2 are called equivalent (or isomorphic).
In this case we write ρ1 „ ρ2.

(c) Two matrix representations R1� R2 : G ›Ñ GL�pK q are called equivalent iff D T P GL�pK q

such that
R2p�q “ T R1p�qT

´1
@ � P G �

In this case we write R1 „ R2.

Remark 1.4

(a) Equivalent representations have the same degree.

(b) Clearly „ is an equivalence relation.

(c) Consequence: it essentially suffices to study representations up to equivalence (as it essen-
tially suffices to study groups up to isomorphism).



Skript zur Vorlesung: Charaktertheorie SS 2022 10

Remark 1.5

If ρ : G ›Ñ GLpV q is a K -representation of G and E :“ p�1� � � � � ��q, F :“ p�1� � � � � ��q are two
ordered bases of V , then by Remark 1.2, we have two matrix representations:

RE : G ›Ñ GL�pK q

� fiÑ
`
ρp�q

˘
E

and RF : G ›Ñ GL�pK q

� fiÑ
`
ρp�q

˘
F

These matrix representations are equivalent since RF p�q “ T REp�qT
´1

@ � P G, where T is the
change-of-basis matrix.

2 Subrepresentations and (Ir)reducibility

Subrepresentations allow us to introduce one of the main notions that will enable us to break repre-
sentations in elementary pieces in order to simplify their study: the notion of (ir)reducibility.

Definition 2.1 (G-invariant subspace, irreducibility)

Let ρ : G ›Ñ GLpV q be a K -representation of G.

(a) A K -subspace W Ñ V is called G-invariant if

ρp�q
`
W

˘
Ñ W @� P G �

(In fact, in this case the reverse inclusion holds as well, since for each � P W we can write
� “ ρp��

´1
qp�q “ ρp�q

`
ρp�

´1
qp�q

˘
P ρp�q

`
W

˘
, hence ρp�q

`
W

˘
“ W .)

(b) The representation ρ is called reducible if V admits a non-trivial proper G-invariant K -
subspace t0u à W à V , whereas it ρ is called irreducible if it admits exactly two G-invariant
subspaces: t0u and V itself.

Notice that V itself and the zero subspace t0u are always G-invariant K -subspaces. Moreover, ρ is
irreducible if it is not reducible and V ‰ t0u.

Definition 2.2 (Subrepresentation)

If ρ : G ›Ñ GLpV q is a K -representation and W Ñ V is a G-invariant K -subspace, then

ρ
W

: G ›Ñ GLpW q

� fiÑ ρ
W

p�q :“ ρp�q|
W

is called a K -subrepresentation of ρ. (This is clearly again a representation of G.)

Clearly, a representation ρ : G ›Ñ GLpV q is irreducible if and only if ρ does not possess any proper
subrepresentation and V ‰ t0u.

Remark 2.3

Let ρ : G ›Ñ GLpV q be a K -representation and 0 ‰ W Ñ V be a G-invariant K -subspace of V .
Now choose an ordered basis B

1 of W and complete it to an ordered basis B of V . Then for each
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� P G the corresponding matrix representation evaluated at � is of the form

`
ρp�q

˘
B

“

»

————–

B
1

BzB
1

´
ρ

W
p�q

¯

B1 ˚
0 ˚

fi

����fl
�

Example 2

(a) Any K -representation of degree 1 is irreducible, for dimension reasons!

(b) Let ρ : S� ›Ñ GLpK
�
q be the natural representation of S� (� • 1) and let B :“ p�1� � � � � ��q

be the standard basis of V “ K
�. Then for each � P G we have

ρp�q

´ �ÿ

�“1
��

¯
“

�ÿ

�“1
ρp�qp��q “

�ÿ

�“1
�� �

where the last equality holds because ρp�q : t�1� � � � � ��u ›Ñ t�1� � � � � ��u� �� fiÑ ��p�q is a
bijection. Thus

W :“ x

�ÿ

�“1
�� yK

is an S�-invariant K -subspace of K
� of dimension 1. It follows that ρ is reducible if � ° 1.

(c) More generally, the trivial representation of a finite group G is a subrepresentation of any
permutation representation of G. [Exercise, Sheet 1]

(d) The symmetric group S3 “ xp1 2q� p1 2 3qy admits the following three pairwise non-equivalent
irreducible matrix representations over C:

ρ1 : S3 ›Ñ Cˆ
� σ fiÑ 1

i.e. the trivial representation,

ρ2 : S3 ›Ñ Cˆ
� σ fiÑ signpσq

where signpσq denotes the sign of the permutation σ , and

ρ3 : S3 ›Ñ GL2pCq

p1 2q fiÑ
` 0 1

1 0
˘

p1 2 3q fiÑ
` 0 ´1

1 ´1
˘
.

See [Exercise 1(a), Sheet 1].
We will prove later in the lecture that these are all the irreducible C-representations of S3
up to equivalence.
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Properties 2.4

Let ρ1 : G ›Ñ GLpV1q and ρ2 : G ›Ñ GLpV2q be two K -representations of G and let α : V1 ›Ñ V2
be a G-homomorphism.

(a) If W Ñ V1 is a G-invariant K -subspace of V1, then αpW q Ñ V2 is G-invariant.

(b) If W Ñ V2 is a G-invariant K -subspace of V2, then α
´1

pW q Ñ V1 is G-invariant.

(c) In particular, kerpαq and Impαq are G-invariant K -subspaces of V1 and V2 respectively.

Proof : [Exercise, Sheet 1] .

3 Maschke’s Theorem

We now come to our first major result in the representation theory of finite groups, namely Maschke’s
Theorem, which provides us with a criterion for representations to decompose into direct sums of irre-
ducible subrepresentations.

Definition 3.1 (Direct sum of subrepresentations)

Let ρ : G ›Ñ GLpV q be a K -representation. If W1� W2 Ñ V are two G-invariant K -subspaces such
that V “ W1 ‘ W2, then we say that ρ is the direct sum of the subrepresentations ρ

W1
and ρ

W2
and we write ρ “ ρ

W1
‘ ρ

W2
.

Remark 3.2

With the notation of Definition 3.1, if we choose an ordered basis B� of W� (� “ 1� 2) and consider
the ordered K -basis B :“ B1 \ B2 of V , then the corresponding matrix representation is of the form

`
ρp�q

˘
B

“

»

——————–

B1 B2

´
ρ

W1
p�q

¯

B1
0

0
´

ρ
W2

p�q

¯

B2

fi

������fl
@ � P G �

The following exercise shows that it is not always possible to decompose representations into direct
sums of irreducible subrepresentations.

Exercise 3.3 (Exercise 4, Sheet 1)

Let � be an odd prime number, let G :“ C� “ x� | �
�

“ 1y, let K :“ F�, and let V :“ F2
� with its

canonical basis B “ p�1� �2q. Consider the matrix representation
R : G ›Ñ GL2pK q

�
�

fiÑ
` 1 �

0 1
˘

.
(a) Prove that K�1 is G-invariant and deduce that R is reducible.
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(b) Prove that there is no direct sum decomposition of V into irreducible G-invariant subspaces.

Theorem 3.4 (M������)

Let G be a finite group and let ρ : G ›Ñ GLpV q be a K -representation of G. If charpK q - |G|, then
every G-invariant K -subspace W of V admits a G-invariant complement in V , i.e. a G-invariant
K -subspace U Ñ V such that V “ W ‘ U .

Proof : To begin with, choose an arbitrary complement U0 to W in V , i.e. V “ W ‘ U0 as K -vector spaces.
(Note that, however, U0 is possibly not G-invariant!) Next, consider the projection onto W along U0,
that is the K -linear map

π : V “ W ‘ U0 ›Ñ W

which maps an element � “ � ` � with � P W � � P U0 to � , and define a new K -linear map

rπ : V ›Ñ V

� fiÑ
1

|G|
∞

�PG
ρp�qπρp�

´1
qp�q .

Notice that it is allowed to divide by |G| because the hypothesis that charpK q - |G| implies that |G| ¨ 1K

is invertible in the field K .
We prove the following assertions:
(1) Im rπ Ñ W : indeed, if � P V , then

rπp�q “
1

|G|

ÿ

�PG

ρp�q πρp�
´1

qp�qlooooomooooon
PWlooooooooomooooooooon

PW (G-invariance)

P W �

(2) rπ |W “ IdW : indeed, if � P W , then

rπp�q “
1

|G|

ÿ

�PG

ρp�q π ρp�
´1

qp�qlooooomooooon
PW

(by G-invariance)looooooomooooooon
“ρp�

´1qp�q
(by def. of π)

“
1

|G|

ÿ

�PG

ρp�qρp�
´1

qlooooomooooon
“ρp��

´1q
“ρp1Gq

“IdV

p�q “
1

|G|

ÿ

�PG

� “ � �

Thus (1)+(2) imply that rπ is a projection onto W so that as a K -vector space

V “ W ‘ kerprπq �

(3) kerprπq is G-invariant: indeed, for each � P G we have

ρp�q ˝ rπ “
1

|G|

ÿ

�PG

ρp�qρp�qloooomoooon
“ρp��q

πρp�
´1

q

“
1

|G|

ÿ

�PG

ρp��qπρpp��q
´1

�q

�:“��

“
1

|G|

ÿ

�PG

ρp�qπρp�
´1

�q

“

´ 1
|G|

ÿ

�PG

ρp�qπρp�
´1

q

¯
ρp�q “ rπ ˝ ρp�q �

Hence rπ is a G-homomorphism and it follows from Property 2.4(c) that its kernel is G-invariant.
Therefore we may set U :“ kerprπq and the claim follows.
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Definition 3.5 (Completely reducible/semisimple representation / constituent)
A K -representation which can be decomposed into a direct sum of irreducible subrepresentations is
called completely reducible or semisimple. In this case, an irreducible subrepresentation occuring
in such a decomposition is called a constituent of the representation.

Corollary 3.6

If G is a finite group and K is a field such that charpK q - |G|, then every K -representation of G is
completely reducible.

Proof : Let ρ : G ›Ñ GLpV q be a K -representation of G. W.l.o.g. we may assume V ‰ t0u.

¨ Case 1: ρ is irreducible ñ nothing to do X.
¨ Case 2: ρ is reducible. Thus dimK pV q • 2 and there exists an irreducible G-invariant K -subspace

0 ‰ V1 Ñ V . Now, by Maschke’s Theorem, there exists a G-invariant complement U Ñ V , i.e.
such that V “ V1 ‘ U . As dimK pV1q • 1, we have dimK pUq † dimK pV q. Therefore, an induction
argument yields the existence of a decomposition

V “ V1 ‘ V2 ‘ ¨ ¨ ¨ ‘ V� p� • 2q

of V , where V1� � � � � V� are irreducible G-invariant subspaces.

Remark 3.7

(a) The hypothesis of Maschke’s Theorem requiring that charpK q - |G| is always verified if K is
a field of characteristic zero. E.g. if K “ C� R� Q� � � �

(b) The converse of Maschke’s Theorem holds as well. It will be proved in the M.Sc. lecture
Representation Theory.

(c) In the literature, a representation is called an ordinary representation if K is a field of
characteristic zero (or more generally of characteristic not dividing |G|), and it is called a
modular representation if charpK q | |G|.

In this lecture we are going to reduce our attention to ordinary representation theory and, most of
the time, even assume that K is the field C of complex numbers.

Exercise 3.8 (Alternative proof of Maschke’s Theorem over the field C. Exercise on Sheet 2.)
Assume K “ C and let ρ : G ›Ñ GLpV q be a C-representation of G.

(a) Prove that there exists a G-invariant scalar product x � y : V ˆ V ›Ñ C, i.e. such that

x���� ���y “ x�� �y @ � P G� @ �� � P V �

[Hint: consider an arbitrary scalar product on V , say p � q : V ˆ V ›Ñ C, which is not necessarily G-invariant.
Use a sum on the elements of G, weighted by the group order |G|, in order to produce a new G-invariant scalar
product on V .]

(b) Deduce that every G-invariant subspace W of V admits a G-invariant complement.
[Hint: consider the orthogonal complement of W .]


