
Chapter 2. The Group Algebra and Its Modules

We now introduce the concept of a KG-module, and show that this more modern approach is equivalent
to the concept of a K -representation of a given finite group G. Some of the material in the remainder
of these notes will be presented in terms of KG-modules. As we will soon see with our second funda-
mental result – Schur’s Lemma – there are several advantages to this approach to representation theory.

Notation: throughout this chapter, unless otherwise specified, we let:

¨ G denote a finite group;

¨ K denote a field of arbitrary characteristic; and

¨ V denote a K -vector space such that dimK pV q † 8.

In general, unless otherwise stated, all groups considered are assumed to be finite and all K -vector
spaces / modules over the group algebra considered are assumed to be finite-dimensional.

4 Modules over the Group Algebra

Lemma-Definition 4.1 (Group algebra)

The group ring KG is the ring whose elements are the K -linear combinations
∞

�PG
λ�� with λ� P K ,

and addition and multiplication are given by
ÿ

�PG

λ�� `

ÿ

�PG

µ�� “

ÿ

�PG

pλ� ` µ�q� and
` ÿ

�PG

λ��
˘

¨
` ÿ

�PG

µ��
˘

“

ÿ

���PG

pλ�µ�q��

respectively. In fact KG is a K -vector space with basis G, hence a K -algebra. Thus we usually
call KG the group algebra of G over K rather than simply group ring.

Note: In Definition 4.1, the field K can be replaced with a commutative ring R . E.g. if R “ Z, then
ZG is called the integral group ring of G.

Proof : By definition KG is a K -vector space with basis G, and the multiplication in G is extended by
K -bilinearity to the given multiplication ¨ : KG ˆ KG ›Ñ KG. It is then straightforward to check that
KG bears both the structures of a ring and of a K -vector space. Finally, axiom (A3) of K -algebras (see
Appendix B) follows directly from the definition of the multiplication and the commutativity of K .
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Remark 4.2

Clearly 1KG “ 1G , dimK pKGq “ |G|, and KG is commutative if and only if G is an abelian group.

Proposition 4.3

(a) Any K -representation ρ : G ›Ñ GLpV q of G gives rise to a KG-module structure on V , where
the external composition law is defined by the map

¨ : KG ˆ V ›Ñ V

p
∞

�PG
λ��� �q fiÑ p

∞
�PG

λ��q ¨ � :“
∞

�PG
λ�ρp�qp�q .

(b) Conversely, every KG-module pV � `� ¨q defines a K -representation

ρV : G ›Ñ GLpV q

� fiÑ ρV p�q : V ›Ñ V � � fiÑ ρV p�qp�q :“ � ¨ �

of the group G.

Proof : (a) Since V is a K -vectore space it is equipped with an internal addition ` such that pV � `q is an
abelian group. It is then straightforward to check that the given external composition law defined
above verifies the KG-module axioms.

(b) A KG-module is in particular a K -vector space for the scalar multiplication defined for all λ P K

and all � P V by
λ� :“ p λ 1Gloomoon

PKG

q ¨ � �

Moreover, it follows from the KG-module axioms that ρV p�q P GLpV q and also that

ρV p�1�2q “ ρV p�1q ˝ ρV p�2q

for all �1� �2 P G, hence ρV is a group homomorphism.
See [Exercise Sheet 2] for the details (Hint: use the remark below!).

Remark 4.4

In fact in Proposition 4.3(a) checking the KG-module axioms is equivalent to checking that for all
�� � P G, λ P K and �� � P V :

(1) p��q ¨ � “ � ¨ p� ¨ �q;

(2) 1G ¨ � “ � ;

(3) � ¨ p� ` �q “ � ¨ � ` � ¨ � ;

(4) � ¨ pλ�q “ λp� ¨ �q “ pλ�q ¨ � ,
or in other words, that the binary operation

¨ : G ˆ V ›Ñ V

p�� �q fiÑ � ¨ � :“ ρp�qp�q

is a K -linear action of the group G on V . Indeed, the external multiplication of KG on V is just
the extension by K -linearity of the latter map. For this reason, sometimes, KG-modules are also
called G-vector spaces. See [Exercise Sheet 2] for the details.
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Lemma 4.5

Two representations ρ1 : G ›Ñ GLpV1q and ρ2 : G ›Ñ GLpV2q are equivalent if and only if V1 – V2
as KG-modules.

Proof : If ρ1 „ ρ2 and α : V1 ›Ñ V2 is a K -isomorphism such that ρ2p�q “ α ˝ ρ1p�q ˝ α
´1 for each � P G,

then by Proposition 4.3(a) for every � P V1 and every � P G we have

� ¨ αp�q “ ρ2p�qpαp�qq “ αpρ1p�qp�qq “ αp� ¨ �q �

Hence α is a KG-isomorphism.
Conversely, if α : V1 ›Ñ V2 is a KG-isomorphism, then certainly it is a K -homomorphism and for each
� P G and by Proposition 4.3(b) for each � P V2 and each � P G we have

α ˝ ρ1p�q ˝ α
´1

p�q “ αpρ1p�qpα
´1

p�qqq “ αp� ¨ α
´1

p�qq “ � ¨ αpα
´1

p�qq “ � ¨ � “ ρ2p�qp�q �

hence ρ2p�q “ α ˝ ρ1p�q ˝ α
´1 for each � P G.

Remark 4.6 (Dictionary)

More generally, through Proposition 4.3, we may transport terminology and properties from KG-
modules to K -representations of G and conversely.

This lets us build the following dictionary:

R�������������� M������

K -representation of G –Ñ KG-module
degree –Ñ K -dimension
homomorphism of representations –Ñ homomorphism of KG-modules
subrepresentation / G-invariant subspace –Ñ KG-submodule
direct sum of representations ρ

V1
‘ ρ

V2
–Ñ direct sum of KG-modules V1 ‘ V2

irreducible representation –Ñ simple (“ irreducible) KG-module
the trivial representation –Ñ the trivial KG-module K

the regular representation of G –Ñ the regular KG-module KG

Corollary 3.6 to Maschke’s Theorem: –Ñ Corollary 3.6 to Maschke’s Theorem:
If charpK q - |G|, then every K -represen- If charpK q - |G|, then every KG-module
tation of G is completely reducible. is semisimple.

� � � � � �

Virtually, any result, we have seen in Chapter 1, can be reinterpreted using this translation table.
E.g. Property 2.4(c) tells us that the image and the kernel of homomorphisms of KG-modules are
KG-submodules, ...

In this lecture, we introduce the equivalence between representations and modules for the sake
of completeness. In the sequel we keep on stating results in terms of representations as much as
possible. However, we will use modules when we find them more fruitful. In contrast, the M.Sc.
Lecture Representation Theory will consistently use the module approach to representation theory.
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5 Schur’s Lemma and Schur’s Relations

Schur’s Lemma is a basic result concerning simple modules, or in other words irreducible representa-
tions. Though elementary to state and prove, it is fundamental to representation theory of finite groups.

Theorem 5.1 (S����’� L����)

(a) Let V � W be simple KG-modules. Then the following assertions hold.

(i) Any homomorphism of KG-modules � : V ›Ñ V is either zero or invertible. In other
words EndKGpV q is a skew-field.

(ii) If V fl W , then HomKGpV � W q “ 0.

(b) If K is an algebraically closed field and V is a simple KG-module, then

EndKGpV q “ tλ IdV | λ P K u – K �

Notice that here we state Schur’s Lemma in terms of modules, rather than in terms of representations,
because part (a) holds in greater generality for arbitrary unital associative rings and part (b) holds for
finite-dimensional algebras over an algebraically closed field.

Proof :

(a) First, we claim that every � P HomKGpV � W qzt0u admits an inverse in HomKGpW � V q.
Indeed, � ‰ 0 ùñ ker � à V is a proper KG-submodule of V and t0u ‰ Im � is a non-zero
KG-submodule of W . But then, on the one hand, ker � “ t0u, because V is simple, hence � is
injective, and on the other hand, Im � “ W because W is simple. It follows that � is also surjective,
hence bijective. Therefore, by Properties A.7, � is invertible with inverse �

´1
P HomKGpW � V q.

Now, (ii) is straightforward from the above. For (i), first recall that EndKGpV q is a ring (see
Notation A.8), which is obviously non-zero as EndKGpV q Q IdV and IdV ‰ 0 because V ‰ 0 since
it is simple. Thus, as any � P EndKGpV qzt0u is invertible, EndKGpV q is a skew-field.

(b) Let � P EndKGpV q. Since K “ K , � has an eigenvalue λ P K . Let � P V zt0u be an eigenvector of
� for λ. Then p� ´ λ IdV qp�q “ 0. Therefore, � ´ λ IdV is not invertible and

� ´ λ IdV P EndKGpV q
p�q

ùñ � ´ λ IdV “ 0 ùñ � “ λ IdV �

Hence EndKGpV q Ñ tλ IdV | λ P K u, but the reverse inclusion also obviously holds, proving the
claim.

Exercise 5.2 (Exercise on Sheet 2)

Prove that in terms of matrix representations the following statement holds:
Lemma 5.3 (Schur’s Lemma for matrix representations)

Let R : G ›Ñ GL�pK q and R
1 : G ›Ñ GL�1pK q be two irreducible matrix representations. If

there exists A P M�ˆ�1pK qzt0u such that AR
1
p�q “ Rp�qA for every � P G, then � “ �

1 and A

is invertible (in particular R „ R
1).
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The next lemma is a general principle, which we have already used in the proof of Maschke’s Theorem,
and which allows us to transform K -linear maps into KG-linear maps.

Lemma 5.4

Assume charpK q - |G|. Let V � W be two KG-modules and let ρ
V

: G ›Ñ GLpV q, ρ
W

: G ›Ñ GLpW q

be the associated K -representations. If ψ : V ›Ñ W is K -linear, then the map

rψ :“ 1
|G|

ÿ

�PG

ρ
W

p�q ˝ ψ ˝ ρ
V

p�
´1

q

from V to W is KG-linear.

Proof : Same argument as in (3) of the proof of Maschke’s Theorem: replace π by ψ and apply the fact that a
G-homomorphism between representations corresponds to a KG-hmomorphism between the corresponding
KG-modules.

Proposition 5.5

Assume charpK q - |G|. Let ρ
V

: G ›Ñ GLpV q and ρ
W

: G ›Ñ GLpW q be two irreducible K -
representations.

(a) If ρ
V

⇢ ρ
W

and ψ : V ›Ñ W is a K -linear map, then

rψ :“ 1
|G|

ÿ

�PG

ρ
W

p�q ˝ ψ ˝ ρ
V

p�
´1

q “ 0 �

(b) Assume moreover that K “ K and charpK q - � :“ dimK V . If ψ : V ›Ñ V is a K -linear map,
then

rψ :“ 1
|G|

ÿ

�PG

ρ
V

p�q ˝ ψ ˝ ρ
V

p�
´1

q “
Trpψq

�
¨ IdV �

Proof : Since ρ
V

and ρ
W

are irreducible, the associated KG-modules are simple. Moreover, by Lemma 5.4,
both in (a) and (b) the map rψ is KG-linear. Therefore Schur’s Lemma yields:

(a) rψ “ 0 since V fl W .
(b) rψ “ λ ¨ IdV for some scalar λ P K . Therefore, on the one hand

Trprψq “
1

|G|

ÿ

�PG

Tr
`
ρ

V
p�q ˝ ψ ˝ ρ

V
p�

´1
q
˘

looooooooooooooomooooooooooooooon
“Trpψq

“
1

|G|
|G| Trpψq “ Trpψq

and on the other hand
Trprψq “ Trpλ ¨ IdV q “ λ TrpIdV q “ � ¨ λ �

hence λ “
Trpψq

�
.

Next, we see that Schur’s Lemma implies certain "orthogonality relations" for the entries of matrix
representations.
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Theorem 5.6 (S����’� R��������)

Assume charpK q - |G|. Let Q : G ›Ñ GL�pK q and P : G ›Ñ GL�pK q be irreducible matrix
representations.

(a) If P ⇢ Q, then 1
|G|

∞
�PG

Pp�q��Qp�
´1

q�� “ 0 for all 1 § �� � § � and all 1 § �� � § �.

(b) If K “ K and charpK q - �, then 1
|G|

∞
�PG

Qp�q��Qp�
´1

q�� “
1
�
δ��δ�� for all 1 § �� �� �� � § �.

Proof : Set V :“ K
�, W :“ K

� and let ρ
V

: G ›Ñ GLpV q and ρ
W

: G ›Ñ GLpW q be the K -representations
induced by Q and P , respectively, as defined in Remark 1.2. Furthermore, consider the K -linear map
ψ : V ›Ñ W whose matrix with respect to the standard bases of V “ K

� and W “ K
� is the elementary

matrix »

——–� 1

�

fi

��fl “: E�� P M�ˆ�pK q

(i.e. the unique nonzero entry of E�� is its p�� �q-entry).

(a) By Proposition 5.5(a),
rψ “

1
|G|

ÿ

�PG

ρ
W

p�q ˝ ψ ˝ ρ
V

p�
´1

q “ 0

because P ⇢ Q, and hence ρ
V

⇢ ρ
W

. In particular the p�� �q-entry of the matrix of rψ with respect
to the standard bases of V “ K

� and W “ K
� is zero. Thus,

0 “
1

|G|

ÿ

�PG

“
Pp�qE��Qp�

´1
q
‰

��
“

1
|G|

ÿ

�PG

Pp�q�� ¨ 1 ¨ Qp�
´1

q��

because the unique nonzero entry of the matrix E�� is its p�� �q-entry.
(b) Now we assume that P “ Q, and hence � “ �, V “ W , ρ

V
“ ρ

W
. Then by Proposition 5.5(b),

rψ :“ 1
|G|

ÿ

�PG

ρ
V

p�q ˝ ψ ˝ ρ
V

p�
´1

q “
Trpψq

�
¨ IdV “

#
1
�

¨ IdV if � “ ��

0 if � ‰ ��

Therefore the p�� �q-entry of the matrix of rψ with respect to the standard basis of V “ K
� is

1
|G|

ÿ

�PG

“
Qp�qE��Qp�

´1
q
‰

��
“

#` 1
�

¨ IdV

˘
��

if � “ ��

0 if � ‰ ��

Again, because the unique nonzero entry of the matrix E�� is its p�� �q-entry, it follows that
1

|G|

ÿ

�PG

Qp�q��Qp�
´1

q�� “
1
�

δ��δ�� �

6 Representations of Finite Abelian Groups

In this section we give an immediate application of Schur’s Lemma encoding the representation theory
of finite abelian groups over an algebraically closed field K whose characteristic is coprime to the order
of the group.


