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Chapter 1. Definitions and Examples

The aim of this chapter is to introduce Coxeter groups in all generality, consider some important exam-
ples, and give a first description of the finite ones. In the next chapters we will give a formal proof of
their classification.

References:
[Hum90] J. E. HumMPHREYS, Reflection groups and Coxeter groups, Cambridge Studies in Advanced
Mathematics Press, vol. 29, Cambridge University Press, Cambridge, 1990.

1 Coxeter systems

Coxeter groups are groups defined by a presentation as follows.

Definition 1.1 (Coxeter system)

A Coxeter system is a pair (W, S) such that
(@) W is a group;
(b) S={s1,...,sn} (n€Z-0) is a finite set of generators for W, and
(c) W admits the presentation
W ={s1,....80 | (sis)"1 =1V i<j),

where mi =1 for each1 < i<n, and mjje {2,3,..., 0} ifi <j.

Remark 1.2

Below are some elementary consequences of Definition 1.1.

1N mg =1= 512 =1 for each 1 < i < n. As we may assume that s1,...,s, # 1, all the
generators s; € S have order 2 and 571 = s;.

(2) We refer to W itself as a Coxeter group if the underlying above presentation is implicitly
understood.
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(3) Ifi < j, then (s;s;)™i =1 by definition and conjugation by s; yields

T =s1sj = sj(sis)"™sj = (sjs0)"" sjsj = (sj50)™
=1
Thus we may set mj; :== m;; and the relation (s;s;)"™i = 1 holds as well, but is superfluous.

(4) mj=2=1= (s,-sl-)2 = 5(Sj5iSj = 5,-5]5715171 = [si,sj] <= si and s; commute.

(5) If myj is even, then (s[-sj)’"if/2 = (sl-si)mz//z- and

’

if mj; is odd, then s;s;s;s;---5jS; = 5;S{SjS;" " S;S].
- . /

h h
mij terms mij terms

(6) We will prove that my; is precisely the order of s;s;.

7) By the above M := (m;)1<i j<n iS a symmetric matrix with all diagonal entries equal to 1.
y JN<i y g q
This matrix is called the Coxeter matrix associated to the Coxeter system (W, S).

2 Coxeter graphs

Henceforth, by graph, we understand a pair (S, A), where S is a finite set and A is a subset of P(S)
consisting of 2-element subsets of S. The elements of S are the vertices of the graph and the elements
of A are the edges of the graph. Furthermore, a weighted graph is a pair (G, ¢), where G = (S, A) is
a graph and ¢ : A—> Z-o U {00} is a map. The valies of ¢ are the weights associated of the edges.

Definition 2.1 (Coxeter graph)

The Coxeter graph associated to a Coxeter system (W, S) with S = {s1,...,sn} and Coxeter matrix
(mij)1<i,j<n is the weighted graph having S as set of vertices and edges defined and weighted as
follows:

(i) if mij € {1,2} there is no edge between s; and s;, and
(it) if mj = 3 there is an edge between s; and s; with weight m;;.

Moreover, by convention, the weight of an edge is written above it, unless the weight is 3, in which
case it is always omitted.

Example 1 (The Coxeter graph Fj)

The Coxeter group

W = (s1,52,53,54 | 5% = 5% = 5% = 542‘ =1,(5152)> =1, (5153)? = 1,(5152)° = 1,(5254)° = 1,
(5253)4 = 1, (5354)3 = 1>

yields the following Coxeter graph and Coxeter matrix:

e — o — 90— and

NN W —
N A~ = W
w = K= N
- W NN
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Re

mark 2.2

The data contained in the Coxeter system (W, S) is equivalent to the data contained in the asso-
ciated Coxeter matrix and equivalent to the data contained in the associated Coxeter graph. If a
Coxeter graph G is given, then we denote by W(G) the associated Coxeter group.

Example 2 (The Coxeter graph A, (n = 2))

3

Th
so

The Coxeter graph

A, e — 9o —0-——- o — o
S1 S2 S3 Sn—1 Sn

yields the Coxeter group
W(A,) ={s1,..., sn|s?=1v1 <i<n,(si51~)2=‘l ifi<j—2(sisip1)’ =1¥1<i<n—1)

and the map

W(An) - 6n-i-1
Si — (i i+1)

defines a group isomorphism between W(A,) and the symmetric group of degree n + 1. (Give a
proof, if time permits. In particular, show how to use the universal property of presentations in order
to prove that the above map defines a group homomorphism. The surjectivity is obvious, while the
injectivity requires more arguments.)

In the sequel, we will prove that we may see W(A,) as a finite group of isometries of R” generated
by reflections.

Irreducibility

e idea of irreducibility is to define elementary building blocks for the the theory of Coxeter systems,
that an arbitrary Coxeter group can be build as a direct product of these elementary building blocks.

Definition 3.1 (Irreducible Coxeter system)

A Coxeter system (W, S) is called irreducible if the corresponding Coxeter graph is connected. By
abuse of language, we may also say that the Coxeter group W, or the Coxeter Graph, is irreducible.

mma 3.2

Assume G = Gy u Gy is a disconnected Coxeter graph, where both Gi and G have non-empty
vertex sets and no edge of G links a vertex of Gy to a vertex of Gy. Then

W(G) = W(Gy) x W(Gy).

Proof: Exercise!

[Use the universal property of presentations, in order to define a homomorphism from W(G) to W(Gy) x
W(G,). Prove that it is bijective. Emphasise why it is necessary that Gy and G, are disjoint.] |
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Consequence 3.3

An induction argument shows that the Coxeter graph G associated to a Coxeter system (W, S) can
be decomposed into connected components G = | |"_, G; such that

W(G) = W(Gy) x - x W(Gp) .

It follows that to classify the Coxeter groups, it is enough to classify the irreducible ones.

4 First vision of the finite Coxeter groups

In this section, we take a first look at the cases, where W is irreducible and finite. We will prove later
that the list below actually provides us with a complete classification of the finite Coxeter groups. Let
n be the cardinality of the set S of generators.

The case n =1

If n =1, then the Coxeter graph is forced to be
Aq .

or in other words consists of a single vertex and no edges. Then W(A;) = (s1 | s =1) =~ G.

The case n =2

If n =2, then the Coxeter graph is
L (m) o« o (m=3)

with W(h(m)) = (s1,52 | s7 = s3 = 1,(s152)™ = 1) = Dy, namely the dihedral group of order
2m, which is the isometry group of the reqular m-gone. (See Appendix B.) Notice that m = 3 gives
again the graph A,. The case m = 4 is rather known as B, and the case m = 6 as G>.

The case n = 3

If n = 3, then there are 3 pairwise distinct Coxeter graphs corresponding to finite Coxeter groups:
A3 I e with W(A3) = &4,
which is the isometry group of the reqular 3-simplex;

Bs o — ot o with W(B3)2C23><163,

which is the isometry group of the cube and of the octahedron; and

Hs o — o> with W(H3) = 25 x G,

which is the isometry group of the dodecahedron and of the icosahedron.
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Th

ecase n=4%

Th

If n =4, then there are 5 pairwise distinct Coxeter graphs corresponding to finite Coxeter groups:
Ay o — 0o —0o—o with W(A;) = S5,
which is the isometry group of the reqular 4-simplex;

By eo—e—e" with W(By) = G} x &4,

which is the isometry group of the reqular hypercube in R%;

Dy e —oo with W(D4) x>~ C23 X Gy
°

which does not correspond to any isometry group of a regular polytope;
F4 e — o —90o—o with W(F3) = W(Dy) x &3,
which is the isometry group of an exceptional reqular polytope with 24 octahedral faces;

Hyi o—o— 9o with |W(Hq)| = 14400,

which is the isometry group of two reqgular polytopes (dual to each other) with 100 (resp. 600)
dodecahedral (resp. tetrahedral) faces.

ecasen>=>5

If n =5, then the pairwise distinct Coxeter graphs corresponding to finite Coxeter groups are:
Ay e—e—e--—-0—o with W(A,) = Sp41,

which is the isometry group of the reqular n-simplex;

By=C, o—e—eo-—0o"us with W(B,) = () x &,,

which is the isometry group of the regular hypercube in R";

/

D, e — o —0-—-0—o with W(Dn)éczni1><16n}
AN
[ ]
and the three so-called exceptional graphs:
[} [}
|
Es e— 0o —0o— 0o — o E; e— 06— 90— 90— — o
and
[ ]
|
E8 e — 06— 06— 06— 06— 06— 0o

with [W(Eg)| =27 3.5, |W(E;)| =2'°.3%.5.7, and |W(Eg)| = 2*-35.52.7.




Chapter 2. Algebraic and Geometric Properties

The aim of this chapter is to study geometric properties of the Coxeter systems (W, S). Provided W
is finite, in order to achieve this goal, we are going to represent W as a group generated by reflec-
tions w.r.t. hyperplanes in the n-dimensional euclidean space R”, where n = |S|. This will enable
us to reduce the classification problem of the finite Coxeter groups to a problem of linear algebra over R.

References:
[Hum90] J. E. HuMPHREYS, Reflection groups and Coxeter groups, Cambridge Studies in Advanced
Mathematics Press, vol. 29, Cambridge University Press, Cambridge, 1990.

5 Deletion and exchange conditions

Throughout this section W is a group generated by a finite set S ¢ W\{1w} and we assume that
s? =1 for each s€ S.

%ﬁnition 5.1
Let we W.

(@) An expression w = sq---s, with s1,...,s, € S is said to be reduced if any expression of w
in the generators in S possesses at least r terms.

(b) The length of w # 1, denoted ¢(w), is the number of terms in a reduced expression of w. By
convention, (1) = 0.

Note: we need to prove that #(w) is well-defined. Assuming it is, then we have the following properties:

Proposition 5.2 (Elementary properties of the length)

(1)

(2) €(ww') < €(w) + (W) for every w,w' e W.

(3) o(w 1) =¢

(4) For each se€ S and each w € W, we have ¢(sw) = ¢(w) £ 1.

w)=1<= weS.

(w) for every we W.

12
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Proof: (1)—(3): exercise!
(4): Since the generators in S all have order 2 the map € : W — {£1},t — —1V t € S defines a group
homomorphism. Therefore:

- if we W and ¢(w) is even, then g(w) =1,
- if we W and £(w) is odd, then g¢(w) = —1.

Clearly ¢(sw) = €(w) + 1 is a possible case and it is always true that ¢(sw) < ¢(w) + 1. Now, assume
that ¢(sw) < £(w) + 1, then
I(sw)=40(w)—n

where n € Z-¢ is odd since
e(sw) = e(s)e(w) = —e(w).

(In other words, the lengths of sw and w do not have the same parity.) Moreover,
Iw) =0(ssw) < f(sw)+1 <= L(sw)=0(w)—1.

In other words, if £(sw) # €(w) + 1, then £(sw) = &(w) — 1. |

Notation: if s1---s, is an expression in the generators s1,...,s, € S, then the notation
51 PR gi .« e Sr
means that s; is deleted from this expression. In other words, s1---5;---s, = 51---5;_1Si+1- -5,

Deletion Condition

We say that (W, S) satisfies the deletion condition (DC) if for any non-reduced expression w =
s1---5, with s1,...,s, € S, there exists 1 < i < j < r such that

Exchange Condition

We say that (W, S) satisfies the exchange condition (EC) if for any reduced expression w = s1 - - s,
with sq,...,s, € S and for any s € S such that ¢(sw) < €(w), there exists 1 < j < r such that

W:551"‘§j"'5r-

Proposition 5.3

Let (W,S) be as above. The deletion condition (DC) and the exchange condition (EC) are equiva-
lent.

Proof:

'=" Assume (DC) holds. Let w = sy -- - s, be a reduced expression and let s € S such that £(sw) < £(w).
Then

SW = SS1---S,

has r + 1 terms, hence is not reduced. Therefore (DC) implies that 2 letters can be deleted from
this expression. We claim that one of these two letter must be s. Indeed, otherwise

5W2551...§i...§/...5r = W=51-5---5 -5,
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which contradicts the fact that the length of w is r. Therefore,

sw=3s1-+-8 -5 = w=s5Ww=s(sw) =ss1-5-5,.

"<" Assume now that (EC) holds and let w = s1---s, with s1,...,s, € S be a non-reduced expression.
Let i := max s.t. s;S;y1---5s, is non-reduced (1 < i < r—1). Then for s;w’ := s;5;41---s,, we have
(i) €(siw') <r—i+1;and
W s <r=(i+ N +1=r—i=¢Ww).
Therefore (EC) implies that there exists an index j such that i+1 < j < rand w' = s;5;41---5;---5..
It follows that

/ v
W=S‘|"'$[W =51...5[5H_1...5/....5r .

Theorem 5.4 (Matsumoto)
The pair (W, S) is a Coxeter system < (W, S) satisfies (DC) < (W, S) satisfies (EC).

Proof: Without proof in this seminar. A proof can be found in [?]. |

Theorem 5.5

Let W < O(n) be a finite group generated by a finite set S of orthogonal reflections of R". Then
(W, S) satisfies (DC), hence is a Coxeter system.

Proof: Without proof in this seminar. A proof can be found in [?]. ]

Remark 5.6

Theorem 5.5 actually provides us with a method to obtain all the finite Coxeter systems listed in
Chapter 1.

6 Informal example: the dihedral groups

[ At this stage | will give an informal example on the board about the underlying geometry of the dihedral groups.]

7 Geometry and representations

From now on, we let (W, S) be a Coxeter system with S = {s1,...,s,} and V be an n-dimensional
R-vector space with ordered basis (eq,..., e,).

Definition 7.1 (Canonical bilinear form, reflections and hyperplanes)

(1) The canonical bilinear form associated to (W, S) is the R-bilinear form defined by

B: VxV — R

(ei,ej) +— Blejej) = —cosmi(_/_ .

(2) For 1 < i < n, the reflection associated to e; and B is the reflection
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g; . vV — Vv
X — X—2B(€[,X)€i

and the hyperplane associated to e; and B is H; := ker B(—, e;) = {x € V| B(x, e;) = 0}.

Remark 7.2 (Properties of B and a;)

(1 - mi;=1= B(e;,e;) = —cosm =1
- myj=2= B(e;ej) =—cosZ =0
- mij = o0 = B(e;, ej) = —cos0 = —1

(2) The form B is symmetric since m;j = mj; for all 1 <i,j < n.

(3) Warning: B is not necessarily positive definite, so that B need not be a scalar product in
general.

(4) The reflection a; has order 2. Indeed, for all x € V, we have:

g;00i(x) = g; (x — 2B(e;, x)e;) = x —2B(e;, x)e; — 2B(e;, x — 2B(e;, x)e;)e;

=x —2B(e;, x)e; — 2 | B(ei, x) — 2B(e;, x) B(ej, e) | e;
—_——
=1

= x —2B(e;, x)e; — 2[—B(e;, x)] e;
= X

Hence a; o g; is the identity map.

(5) The map B(e;, —) is a non-zero R-linear form, so that its image is the whole of R. Therefore,
it follows from the Rank—nullity theorem that

dimg H; = n — dimg(ImB(e;, —)) =n—1.

(6) We have:
- 0i(x) = x < B(e;,x) =0 <= x€ H,;, and
: 0'[(6‘[) =e —2-1-e;=—e;

Therefore o; is indeed a reflection of Hyperplane H;.

mma 7.3

For each 1 < i < n the reflection o; is an R-linear transformation which is orthogonal with respect

to B. (One also says that the a;’s preserve B.)

Proof: The R-linearity is clear by definition. We only prove that o; (1 < i < n) is orthogonal with respect

to B. Notice that each x, y € R” may be written as

X = U+ Ae; and y=v+upe; with u,ve H A peR
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since H; is a hyperplane and e; ¢ H;. Therefore,
oi(x) = u— Ae; and oi(y) =v—pe;
by Remark 7.2(6) and it follows from the R-bilinearity of B that
B(agi(x), 0:(y)) = B(u — Ae;, v — pe;) = B(u,v) — AB(e;, v) —u B(u, e;) +AuB(e;, e;)
—_—

0 )
= B(u,v) + AB(e;,v) +uB(u, e;) +AuB(e;, ;)
——— —
=0 =0
= B(u+ Ae;, v + pe;)
=B(x.y),

as required.
Theorem 7.4

(@) The map defined by

o W — GL(V)
Si — o;

is a group homomorphism, called the canonical representation associated to W'

(b) Im(o) < O(V, B) := {¢ € GL(V) | ¢ preserves B}.

(c) The integer my; is the order of s;s; in W for all 1 < i< j<n.

Proof: (a) By the universal property of presentations (B.6 of the Appendix), it suffices to check that the
relations defining W are mapped to the identity map on V by o.
- For the relations s> = 1 (1 < i < n), it is obvious since we have seen in 7.2(4) that o7 has

order 2.
- For the relations (s;s;)™i = 1 with i # j and 2 < m;; < o, we consider the plane P :=
Re; @ Re; in R”. Then the matrix of B|p : P x P — R w.rt. the basis (e;, e)) is

_ z
1 cos .
— C0S — 1
mi;

B(Xe; + pej) = A’ B(e, e;) +2AuB(e;, e;) + 1 B(ej, e;)
=1 1
2 a 2
=X+ 2Ap(—cos —) + p
if
7

and we compute

) + 1 (cos? L + sin? L)

= X 4 2Au(— cos
m[/

m,, m,‘/

2 2
by T

=<)\—ucos ) +<usln ) =>0.
m,-j mi/-

Therefore B|p is positive definite and V = P @ Q with Q = P+ the orthogonal subspace
to P wrt. to B. (Notice that B|p is also non-degenerate, since otherwise there would be a
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0 # v € P such that B|p(v, w) = 0 for all w € P and in particular we would have B|p(v,v) =0,
which contradicts the fact that B|p is positive definite.)

It follows that H; = ef © P+ = Q and similarly H; > Q. Thus gi|¢ = Id and gj|¢ = Id, so that
both 0; and o} are entirely characterised by their restriction to P. In particular, whether the
relation (0;07)™7 = Id holds can be tested on P. In fact, because P together with B|p can be

identified with the euclidean space R? with its standard scalar product, by Theorem B.7 and
2n

its proof, we have that (0;0;)|p is a rotation of angle o P =~ R? and hence (0;0;)™ = Id.
(b) By Lemma 7.3, g; € O(V, B) for each 1 < i < n, whence Im(g) € O(V, B).
(c) We differentiate between two cases:
(i) mi < oco: By (a), my; is the order of (g;0;)|p in P, that is ((g;0))|p)" # Id if 1 < m < my).
But as o is a group homomorphism, we must also have that (s;s;)" # Id if 1 < m < m;;, hence
m;; is the order of s;s;.

(ii) my = oo: By definition, we have
oi(ej) = ej —2B(e;, ej)e; = ej + 2e; and oi(e;) = e; —2B(ej, e))e; = e; + 2e;.
Hence oi(e; + ;) = gj(e; + ;) = e; + e; and gioj(e; + ;) = e; + e}. It follows that
o;0i(e;) = o(e; +2ej) = ge;i + ej) + o) = e +ej+ej+2e =2 +e;) + e
and an induction yields
(0i0)) (e;) = 2k(e; +ej)) +e;  Vk=1.

In particular, (g;07)*(e;) # e; ¥k =1, so that we must have that the order of g;0; is infinite,
and therefore so is the order of s;s; since o is a group homomorphism. ]

8 The dual representation

Let now V* = Homg(V,R) be the R-dual of V and let (b4, ..., b,) denote the dual basis to the basis
(e1,...,en) of V. Recall from linear algebra that any endomorphism a € Endgr(V) = Homg(V, V)
induces an R-linear endomorphism

o: V¥ — VF*
f - laf)y:=foa

and the matrix of ‘@ w.rt. the basis (b1,...,bp) is the transpose of the matrix of a w.r.t. the basis
(61,...,6,,).
Define

o W —  GL(V¥)
wo o= o*(w) = (o(w™).
Lemma 8.1

The map o* is a group homomorphism, called the dual representation (to o).

Proof: Let u,we W. Then

o*(uw) = (o((uw)™")) = (o(w™ ) oo(u™)) = (o(u™") o (a(w™)) = 0*(u) 0 0*(w).
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Furthermore, let us denote the evaluation of f € V* = Homgr(V,R) in v € V as follows:

(=, =) V¥xV — V
(f,v) —  (f,vy:=1f(v)

and moreover, given w e W, ve V and f € V*, we set w.v := g(w)(v) and w.f := a*(w)(f).

L_emma 8.2

We have (w.f,vy ={f,w vy Ywe W,YveVandV fe V*

Proof:

wh, vy = (w.h)(v) = (*W)(5) (V) = (0w ")) (v) = (o a(w™) (v)
=f(o(w ) (v) = w v, m

9 Half-spaces and chambers

Given 1 < i < n, we set
H; :=ker((—,e))) = {fe V* | f(e;) =0},

which obviously admits the basis (b1, ..., lv),-, ..., bp). Moreover, we let

Dy(Hy):={fe V¥ |{fe)>00 and D_(H;):={fe V*|{f e <0}

Definition 9.1

(@) The subset C := {f € V* | {f,e;) >0 V1 <i<n}=[i_iDs(Hi) of V* is called the
fundamental chamber of of V*.

(b) The subsets w.C := {w.f | f € C} of V* are called the chambers of V'*.
Lemma 9.2

For each s; € S the operation s;.f for f running through V* is a reflection of hyperplane H; which
exchanges D, (H;) and D_(H;).

Proof: To begin with, for each 1 < j # i < n and every v € V we have:
&
Lem.8.2 T
(si-bj,v) “=""Lbj,si.v)y =(bj,v—2B(v,e))e;) = (bj,v) —2B(v,e;){bj, e;)
= <(bj,v)

Hence s;.b; = bj, which proves that the map s;.(—) is the identity on the hyperplane H,.
Furthermore, if i = j, then the above calculation yields

<S,‘.b,’, V> = <b,‘, V> — ZB(V, ei) ,
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so that s;.b; = b; — 2B(—, e;). Now, on the one hand b; € D (H;) since {b;, e; =1 > 0, and on the
other hand, s;.b; € D_(H;) since

<S[.b[, e,-> = <b,‘, 6‘[> — 28(6‘,‘, 6‘[) =1-2-1=-1<0.

It follows that s;.f € D_(H;) for every f € D, (H;), and conversely s;.f € D, (H;) for every f € D_(H;),
as required. ]

E(ercise 9.3
Let we W and s; € S. Then,

w.C < Dy (H;) — O(siw) = €(w) +1; and
w.C < D_(H;) — I(siw) =0(w) — 1.

Proof: Please write the solution on your own. ]

Theorem 9.4 (Tits)
Let C be the fundamental chamber in V*. Then

wCnC=yg VYwe W\{1}.

Proof: Let w € W\{1} and let w = #;---t, with t,..., t- € S be a reduced expression for w. Then
¢(tw) = €(w) — 1 and it follows from Exercise 9.3 that

w.C < D_(Hy) and C< Di(Hy).
Hence, w.C n C < D_(Hy) n D+ (H1) = & by definition. |

Fundamental Corollary 9.5

Both ¢ : W — GL(V) and ¢* : W — GL(V*) are injective. In particular, W, a(W) and a*(W)
are isomorphic groups.

Proof: We need to prove that the kernels of o and o* are trivial. So, let we W.

- To begin with, ¢*(w) = Idyx = w.f = o*(w)(f) = f for every f € V*, so that w.C = C by
definition and it follows from the theorem of Tits that w = 1. Hence ker(c*) = {1}.

- Next, we use the fact that o*(w) ='a(w™"). It follows that:
ow)=I1dy = ow )=Id"=Ildy = T‘o(w ) ="ldy =Idy= .

Therefore ker(g*) = {1} = ker(ag) = {1} as well. u

Proposition 9.6 (Requires Einfiihrung in die Topologie)

The subgroup a(W) of GL(V) is closed and discrete — where GL(V) is seen as topological
subspace of M, (R) ~ (R”z, standard topology) and endowed with the induced topology.

Proof: Accepted without proof. ]
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10 Irreducibility of representations

For the terminology used in this section, we refer to Appendix C and we note that the canonical bilinear
form B is W-invariant by Theorem 7.4(b).

Proposition 10.1

If (W,S) is an irreducible Coxeter system, then the following holds:
(@) Any proper W-invariant subspace of V' is contained in ker B.

(b) w.u = u for every w e W and every u € ker B, so that in particular ker B is W-invariant.

Proof: Set U:=kerB={xe V| B(x,y) =0Vye V}.
(a) Let V' < V be a W-invariant subspace of V. We treat two cases:

Case 1: J an index i such that e; € V'. Let j # i such that m;; = 3, so that cos ﬁu > 0. Thus,
, T
V'ssjei=e —2B(e;ej)ej = e; —2(—cos —)e;
ITI[j
and
07'528(6‘,',6‘]‘)6‘/' = 95—5]'.6[6 V/ > e,—e V/.

Since (W, S) is irreducible, its Coxeter graph is connected and the above argument proves
that e, € V’/ for every 1 < k < n, ie. V' =V, which is a contradiction.

Case 2: e; # V' for every 1 < i< n. Now if v € V/, then

sivi=v —2B(e;,V)e;, = 2B(e;,V)ei=_V — spv eV
—_——
eV’ eV’

and since e; # V/, we must have B(e;,v') = 0. Hence v/ € U and V' < U.
(b) For each 1 < i< n and each u € U holds B(e;, u), so that

siu=0(s)(u)=u—2B(e;,u)e; =u.
—
=0

As W is generated by S, it follows that w.u = u for every w e W and u e U. m

Theorem 10.2
Let (W, S) be an irreducible Coxeter system. Then:

o is irreducible <= B is non-degenerate

In which case o is in fact absolutely irreducible.

Proof: Propostion 10.1 implies that any W-invariant proper subspace of V is contained in U := kerB.
Therefore, we have the following equivalences:

o is irreducible <= there is no proper W-invariant subspace of V

Prop. 101
— U={0}
Definition .
<= B is non-degenerate
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Now we claim that o irreducible = ¢ absolutely irreducible.
Let 1 < i< n. Then a(s;) =: g; is a reflection of V with fixed hyperplane H; = {ve V| B(e;,v) = 0}.
Let @ be an endomorphism of o. Then,

ao(o;—Idy)(v) = a(s;.v—v) = a(s;.v) — a(v) = sp.a(v) — a(v) = (g, — ldy) o a(v) Yve V.

Hence a o (0g; — Idy) = (g; — Idy) o a.
Moreover,

(0'[ — |d\/)(V) = (O'(S[) — |d\/)(V) =V — 28(6’[, V)G[ —V = —28(6’[, V)G[
for every v € V, so that Im(g; — Idy) = Re;. Hence by the above a(Re;) € Re;, and therefore there
exists A € R such that a(e;) = Ae;. Then V' :={v e V| a(v) = A- v} is by construction a W-invariant
subspace of V containing Re; (hence non-zero) since:

Vwe W VvV eV awV)=walV)=w.(A- V)= (wV) = wi eV

Therefore, as we assume that o is irreducible, we must have V # V’ and it follows that o = A - Idy, as
required.

21



Chapter 3. Classification of the finite Coxeter groups

The aim of this chapter is now to classify the finite Coxeter groups using linear algebra and graph
theory. First we see that the finiteness of a Coxeter group is equivalent to the fact that the associated
canonical bilinear form is positive definite. Second we use this fact to provide a constructive proof of
all possible finite Coxeter groups as we already described them in Chapter 1.

References:
[Hum90] J. E. HumPHREYS, Reflection groups and Coxeter groups, Cambridge Studies in Advanced
Mathematics Press, vol. 29, Cambridge University Press, Cambridge, 1990.

11 The finiteness theorem

Theorem 11.1 (Finiteness Theorem)

Let (W, S) be an irreducible Coxeter system. Then W is finite if and only if the associated canonical
R-bilinear form B is positive definite.

Proof:

'=" Assume that W is a finite group. Let U := ker B. Clearly U < V since e.q. B(ey,e1) =1 # 0.
Thus by Maschke’s Theorem (see Appendix C) there exists a W-invariant subspace U’ < V such
that V. = U @ U’. However, by Proposition 10.1(a), if U’ is a W-invariant subspace of V, then
either U' < U or U = V. Hence U’ = V and it follows immediately that U = {0}, so that B is
non-degenerate. It now follows from Theorem 10.2 that ¢ is absolutely irreducible.

Now, we may consider the standard scalar product (—, —)y on V. It is then easily checked that

A:VxV-—R,(v,W)—Ay,V):= Z w.v, wv'yy
weW

is an R-bilinear form, which is W-invariant (Exercise!) and positive definite (since {(—, —)y is). By
Proposition C.2(b), there exists A € R such that B = AA. In particular

128(6‘1,6’1):AA(61,€1) - A>0.
—

>0
It now follows that B is positive definite since A is.

"<" We omit this part of the proof as it requires arguments using the Einfiihrung in die Topologie.

22
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Terminology: If (W, S) is a Coxeter system and I"yy is the associated Coxeter graph, then by abuse
of language we say that 'y is positive definite if the associated canonical bilinear form B is positive
definite. We also write det(I"yy) instead of det(B).

12 The classification

As we have seen in Chapter 1, in order to classify the Coxeter systems, and hence the Coxeter groups,
it is enough to classify the irreducible Coxeter systems, in which case the associated Coxeter graph Iy
is connected.

Moreover, by the Finiteness Theorem, finding the irreducible Coxeter systems (W, S) such that W is
finite is equivalent to finding the positive definite associated canonical R-bilinear forms B, the definition
of which depends only I"'yy. Hence we are reduced to the following graph theory problem:

Which are the connected Coxeter graphs 'y for which the associated canonical R-bilinear
form is positive definite?

Theorem A (Positive definite Coxeter graphs)

Let I'w be an irreducible Coxeter graph with n € Z-q vertices. Then 'y is positive definite if and
only if 'y belongs to the following list (List A):

An e— o —0o-—-0—o (n>’|)

B, = C, e— o —o-—e2 o (n22)

D, o—o—o———o—o/ (n>4)
\o

Es |

E; ‘
o — 9o —90o—0o—0— o (n=7)
. y
e— e — 90— 0o—0—0—o (n=28)
Fy e— ot e (n=4)
G LI (n=2)
Hs o—oio (n=3)
Hy o—o—oio (n=4)

/z(m) o " o (n =2,me {5} ) 227)
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Theorem B (Positive semi-definite Coxeter graphs)

Let I'w be an irreducible Coxeter graph with q + 1 vertices (q € Z-o). Then 'y is positive
semi-definite if and only if 'y belongs to the following list (List B):

~

A’] .i. (q:1)
o — o
~ [ ] [
Aq \ ! (g=2)
. K
e — o
B, =G ot et (g=2)

o8 ot e 0o —ete (=3
Dy .>....<. (q=4)
Fy c— ot e e (g =4)
Go et e (g =2)

.
Eg |

e — 90— —90—0—0—0—0o (q:8)

Furthermore, if Ty is positive semi-definite but not positive definite, then dimg(ker B) = 1.

We are going to prove Theorem A and Theorem B together in two seperate proofs, the first one dealing
with the sufficient condition (i.e. the direction "<") and the second one dealing with the necessary
condition (i.e. the direction "=").
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For the sufficient condition, we need the following standard Criterion from linear algebra, which we

accept here without proof:

Criterion for positive (semi-)definiteness of a symmetric R-bilinear form

Let B be a symmetric R-bilinear form on an R-vector space of dimension n € Z.g with matrix
Mat(B). For each 1 < i < n, let B; denote the principal minor of Mat(B) of size i. Then:

(a) B is positive definite <= det(B;) > 0 for each 1 < i < n.

(b) B is positive semi-definite with dimg(ker B) = 1 < det(B;) > 0 for each 1 < i< n—1 and

det(B) = 0.

Proof of Theorem A and Theorem B: sufficient condition "<":
We need to prove that:

Ny elistA = [y is positive definite; and
NwelistB = Ty is positive semi-definite.

We proceed by induction on the number n of vertices of the graph 'yy. Denote by Mat(B) the matrix

of B w.r.t. the ordered basis (eq, .

- n

- n

.. en).

1: A e yields Mat(B) = (1), hence det(B) =1 > 0.
=
_% 1

2: Az —

e — o yields Mat(B) = ( ) hence det(B) % > 0.

4 . 1 - 1
B, e— e yields Mat(B) = v 12 , hence det(B) = 5 > 0.
v
G, e-2e yields Mat(B) = 1\/@ _173 ) hence det(B) = 1 > 0.
-2
L(m) e e yields Mat(B) = <_c151 _C;)S% ) hence det(B) = 1 — cos?(Z) > 0.
A oL e yields Mat(B) = (_CJSL _af% ) hence det(B) = 0.

Hence for n = 1,2 all the graphs in List A and List B satisfy the above criterion. We may now assume

that

- n>3: let 'y be in List A or List B with n > 3 vertices. We now remove an end vertex of [Ny,

apart for A, for which we may remove an arbitrary vertex. We denote by [}, the resulting graph
and we observe that I}, is in List A. Therefore by the induction hypothesis the matrix B’ of I}, is

positive definite. Using the Criterion, it suffices to prove that det(Mat(B)) > 0 if [\ € List A and
det(Mat(B)) = 0 if ' € List B, where

Mat(B) = (? ) )

1

A straightforward computation (Exercise!) yields:

det(A,) =51 >0 (n>3), det(F3) = % >0,

det(B,) = 5 >0 (n > 3), det(Hs) = 35 > 0,
det(D,) = 515 >0 (n=4), det(Hs) = =25 > 0,
det(E,) = %2 >0 (for n =7,8,9), det(X) = 0 for X in List B.
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For the necessary condition, we will need to consider the subgraphs of I'yy. We recall the following
notion from graph Theory:

Definition 12.1 (Subgraph)

Let "y be an irreducible Coxeter graph. We call subgraph of 'y a graph ", formed from a subset
of the vertices and edges of I'w, where the weight of an edge of I}, is less or equal to the weight
of the same edge seen as an edge of I"yy.

Proposition 12.2

Let I'w be an irreducible Coxeter graph with n vertices (n € Z~g), which is either positive definite
or positive semi-definite. Then any proper subgraph of Iy is positive definite.

Proof: Let I}, be a proper subgraph of ['yy. W.Lo.g. we may assume that the vertices of ")y are labelled
such that the vertices of '}, are sq1,...,s, with m < n.
Write mj; for the weight of the edge (s;,s;) in I'},. Let Mat(B) = (b;;) be the matrix of the canonical
bilinear form B associated with 'y and Mat(B’) = (b;;) be the matrix of the canonical bilinear form B’
associated with I},,.

Clearly:
T T
m,, <m; == bl.=—cos— > —cos— = by
if ] ij / m:: J
ij ij
Assume now that [}, is not positive definite. Thus there exists 0 # v € V' :=(eq,..., ey )r such that

B'(v,v) < 0. Write v as a linear combination v = Y7, x;e; € V" with x; € R for each 1 < i < n and
x; = 0 for each m +1 < i < n. Then for |v|:= X", |xi|e;, we have:

n m
vI) = D bylxil Il < D2 b lxil Il

i,j=1 ij=1

0 < B(|v],

< Z bixix; = B'(v,v) <0

ij="1
Hence B(|v|,|v|]) = 0 and this implies (Exercise!) that all the coefficients of |v| are non-zero. Therefore
m=nand b; = bfj for all 1 < i,j < n, so that mi = mf/ and F’W = [y, hence a contradiction. [ |

We also need the two following graphs:

Lemma 12.3

The graphs  Z4 e o2 e and 75 e oo o> e are neither

positive definite nor positive semi-definite.

Proof: We find det(Z;) = 1282 < 0 and det(Z) = 252 < 0. n

Proof of Theorem A and Theorem B: necessary condition "<":
Let 'y be an irreducible Coxeter graph which is either positive definite or positive semi-definite. Let
n € Z-o be the number of vertices of ['yy. We have to prove that ['yy belongs either to List A or to List B.
We use the following property:

Property ® : Any proper subgraph of I'y is neither in List B, nor Z4, nor Zs.

Indeed, on the one hand, by Proposition 12.2 any proper subgraph of [" of "y is positive definite, but on
the other hand, we have seen in the proof of the sufficient condition ("<") of Theorem A and Theorem B
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and Lemma 12.3 that the graphs in List Bu{Z4, Z5} are not positive definite.

We are now going to prove that the fact that ')y has Property @ implies that ['yy € List A L List B. We
proceed in a constructive manner as follows:

> [T, , B or
/ \ 1@ e’ f}u‘;‘c-’m i, (3mge)

Ja cirewt |f1[:, ﬂ/d. |:|.'{W\ 7 F:u

\,

™
N
Cagel{ al Cag 2
\\'fajkia o Fa w«}l i c“:r
ol r\L we <3 such Hrqf W.J' 74

e 7@
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Appendix: Background Material: Group Theory

The aim of this chapter is to introduce formally two constructions of the theory of groups: semi-direct
products and presentations of groups. Semi-direct products are useful when considering concrete
groups, for instance in examples. Presentations describe groups by generators and relations in a con-
cise way. They enable us to define Coxeter groups. Finally, in Section C, we present some well-known
results of the representation theory of finite groups, which will enable us to classify the finite Coxeter
groups.

References:

[Hum96] J. F. HUMPHREYS, A course in group theory, Oxford Science Publications, The Clarendon
Press, Oxford University Press, New York, 1996.

[Joh90]  D. L. JoHNsoN, Presentations of groups, London Mathematical Society Student Texts, vol. 15,
Cambridge University Press, Cambridge, 1990.

A Semi-direct products

The semi-direct product is a construction of the theory of groups, which allows us to build new groups
from old ones. It is a natural generalisation of the direct product.

Definition A.1 (Semi-direct product)

A group G is said to be the (internal or inner) semi-direct product of a normal subgroup N < G
by a subgroup H < G if the following conditions hold:

(@) G = NH;
(b) N H={1}.

Notation: G = N x H.

Example 3

(1) A direct product Gy x Gy of two groups is the semi-direct product of N := Gy x {1} by
H:= {1} X Gz.

(2) G = S5 is the semi-direct product of N = CG3 ={(123))<Sz3and H=C, ={(12)) < Ss.
Hence S3 =~ (3 x G.

30
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Notice that, in particular, a semi-direct product of an abelian subgroup by an abelian subgroup
need not be abelian.

(3) More generally G = S, (n = 3) is a semi-direct product of N = A, < S, by H = G, = {(1 2)).

Remark A.2

(@) If G is a semi-direct product of N by H, then the Znd Isomorphism Theorem yields
G/N=HN/N=H/HAN=H/{1} ~H
and this gives rise to a short exact sequence
1—N—>GC—H—1.
Hence a semi-direct product of N by H is a special case of an extension of N by H.

(b) In a semi-direct product G = N x H of N by H, the subgroup H acts by conjugation on N,
namely Yh e H,

6h: N — N
n —  hnh~!

is an automorphism of N. In addition Oy, = 6 o O for every h, h’ € H, so that we have a
group homomorphism

0: H — Aut(N)
h > 6.

P

-

oposition A.3

With the above notation, N, H and 6 are sufficient to reconstruct the group law on G.

Proof: Step 1. Each g € G can be written in a unique way as g = nh where ne N, h e H:

indeed by (a) and (b) of the Definition, if g = nh = n’h’ with n,n" € N, h, h’ € H, then

n'n"=h(h)Y"eNnH={1},

hence n = n’ and h = h'.
Step 2. Group law: Let g1 = n1h1, g2 = nahy € G with nq,ny € N, hy, h, € H as above. Then

9192 = nihinahy = ny hina(hy" hy)hy = [n164,(n2)] - [h1h2).
———

O, (n2) |

With the construction of the group law in the latter proof in mind, we now consider the problem of
constructing an "external" (or outer) semi-direct product of groups.
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Proposition A.4

Let N and H be two arbitrary groups, and let 6 : H — Aut(N), h — 6}, be a group homomorphism.
Set G := N x H as a set. Then the binary operation

GxG — G
((n1, h1), (ny, hz)) —  (n1,h1) - (n2, h2) == (n16k,(n2), h1hy)

defines a group law on G. The neutral element is 1 = (1n, 1) and the inverse of (n,h) € N x H
is (n,h)™" = (6,-1(n~"), 7).
Furthermore G is an internal semi-direct product of Ng := N x {1} = N by Hp := {1} x H > H.

Proof: Exercise. [ |

Definition A.5
In the context of Proposition A.3 we say that G is the external (or outer) semi-direct product of N
by H w.rt. 6, and we write G = N x¢g H.

Example 4

Here are a few examples of very intuitive semi-direct products of groups, which you have very prob-
ably already encountered in other lectures, without knowing that they were semi-direct products:

(1) If H acts trivially on N (i.e. 6, = ldy YV h e H), then N xg H= N x H.
(2) Let K be a field. Then
GL,(K) = SLn(K) x {diag(A,1,..., 1) e GLy(K) | A€ KX},
where diag(A, 1,...,1) is the diagonal matrix with (ordered) diagonal entries A, 1,...,1.
(3) Let K be a field and let
* ok
B:= {( ) € GL,,(K)} (= upper triangular matrices),

0 *

1 *
U:= { ( ) € GLn(K)} (= upper unitriangular matrices),
0 1

M0
T:= {( > € GL,,(K)} (= diagonal matrices).

0 An

Clearly U is normal in B, since it is the kernel of the group homomorphism B — T which
sends a matrix in B to its diagonal. Thus B is a semi-direct product of U by T.

(4) Let G, ={g) and C, = (h) (m, n € Z>4) be finite cyclic groups.
Assume moreover that k € Z is such that k" =1 (mod m) and set

0: G — Aut(Cy)
hi N (Qh)l’

where 6y : Cpy — Cp, g — gk. Then

(6)"(9) = ()" (g") = (Bn)" (") = ... = g"" = g
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B

since o(g) = m and k" =1 (mod m). Thus (6,)" = Idc, and 6 is a group homomorphism.
It follows that under these hypotheses there exists a semi-direct product of C,, by C, w.r.t.
to 6.

Particular case: m = 1, n = 2 and k = —1 yield the dihedral group D>, of order 2m with
generators g (of order m) and h (of order 2) and the relation 6,(g) = hgh™' = g~".

Presentations of groups

Idea: describe a group using a set of generators and a set of relations between these generators.

To

Examples: (1) C, =<{g)={g|g™"=1) 1 generator: g
1 relation: g" =1
(2) Dopm = Cp %9 G 2 generators: g, h
3 relations: g" = 1,h?% = 1,hgh_1 = g_1
(3) 2=z 1 generator: 1z

no relation (v~ "free group")

begin with we examine free groups and generators.

Definition B.1 (Free group | Universal property of free groups)

Let X be a set. A free group with basis X (or free group on X) is a group F containing X as a
subset and satisfying the following universal property: For any group G and for any (set-theoretic)
map f : X — G, there exists a unique group homomorphism f:F — G such that f|X = f, orin
other words such that the following diagram commutes:

X1 a
o,

i:=inc o7 . B
20 AV st flx=foi=f

Moreover, | X| is called the rank of F.

Proposition B.2

If F exists, then F is the unique free group with basis X up to a unique isomorphism.

Proof: Assume F’ is another free group with basis X.

Let i : X — F be the canonical inclusion of X in F and let i’ : X — F’ be the canonical inclusion of X
in F'.
X «—— F’ By the universal property of Definition B.1, there exists:

S| . . = . AN
,—j e - a unique group homomorphism i’ : F — F’ s.t. i/ = i’ o i; and
T - a unique group homomorphism i : F/ — F st. i=io{.

FL’
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X~ F  Then (foi:’)|x = i, but obviously we also have Idr |x = i. Therefore, by uniqueness,

lde -2 2" s
{ P we have io i’ = Idg.
F Rt
A similar argument yields ¢ o i = Idg/, hence F and F’ are isomorphic, up to a unique isomorphism,
namely { with inverse ' |

Proposition B.3

If F is a free group with basis X, then X generates F.

Proof: Let H := (X) be the subgroup of F generated by X, and let jy := X — H denote the canonical
inclusion of X in H. By the universal property of Definition B.1, there exists a unique group homomorphism
JH such that jyoi= jy:

X ey
o,

Pl ~
220 3k

F

i

Therefore, letting k : H < F denote the canonical inclusion of H in F, we have the following commutative
diagram:

Thus by uniqueness « 0174 = Idg, implying that ﬂ, : H — F is injective. Thus
F =1Im(lde) = Im(k o jiy) = Im(ji;) € H

and it follows that F = H. The claim follows. [ |

Theorem B.4

For any set X, there exists a free group F with basis X.

Proof: Set X := {x, | a € I} where [ is a set in bijection with X, set Y := {y, | @ € I} in bijection with X
but disjoint from X, ie. X nY =, and let Z:= X U Y.
Furthermore, set E :=(J7", Z", where Z° := {( )} (i.e. a singleton), Z':=Z,Z?:=Z x Z, ...
Then E becomes a monoid for the concatenation of sequences, that is

(z1,..vz) (24,000 20) = (=1, znn 24, 2))

ezn ezm ezn+m

The law - is clearly associative by definition, and the neutral element is the empty sequence ( ) e Z°.
Define the following Elementary Operations on the elements of E:

Type (1): add in a sequence (z1,...,2,) two consecutive elements x4, y, and obtain
(z1, -1 2k Xar Yar Zk41, -1 Zn)

Type (1bis): add in a sequence (z1,...,z,) two consecutive elements y,, x, and obtain
(21,~~~,Zm:ya:Xa:Zm+1w~~:Zn)

Type (2): remove from a sequence (z1,...,2,) two consecutive elements x,, y, and obtain
(21:- --,Zr:)?a:garzr-&-‘lw- ~an)

Type (2bis): remove from a sequence (z1,...,z,) two consecutive elements y,, x, and obtain

(Z1r"'rZSryarXaIZS+1r"'!Zn)
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Now define an equivalence relation ~ on E as follows:

two sequences in E are equivalent :<= the 2nd sequence can be obtain from the 1st

sequence through a succession of Elementary
Operations of type (1), (1bis), (2) and (2bis).

It is indeed easily checked that this relation is:

— reflexive: simply use an empty sequence of Elementary Operations;

— symmetric: since each Elementary Operation is invertible;

— transitive: since 2 consecutive sequences of Elementary Operations is again a sequence of Elementary

Operations.

Now set F := E/ ~, and write [z, ..., z,] for the equivalence class of (z1,...,2,) in F = E/ ~.

Claim 1: The above monoid law on E induces a monoid law on F.

The induced law on F is: [z1,...,2z,] - [}, ....Zp] =21, .- 20, 27, ..., Z)y].
It is well-defined: if (z1,...,2,) ~ (t1,..., &) and (#,...,2,) ~ (t;,..., t]), then
(z1,oovzn)- (2, zh) = (21, o 20, 200 oo 2Zh)

t1,....t,24,...,2,) via Elementary Operations on the 1st part

oot B, 000 1)) via Elementary Operations on the 2nd part
oo tn) - (8, 1)

The associativity is clear, and the neutral element is [( )]. The claim follows.

Claim 2: F endowed with the monoid law defined in Claim 1 is a group.
Inverses: the inverse of [z1,...,2,] € F is the equivalence of the sequence class obtained from
(z1,...,2,) by reversing the order and replacing each x, with y, and each y, with x,. (Obvious
by definition of ~.)

Claim 3: F is a free group on X.
Let G be a group and f : X — G be a map. Define

f: E — G
(z1,...vzn)  —  f(zr) -+ - f(zn),
where f is defined on Y by f(y,) := f(x; ") for every y, € Y.

Thus, f (z1,...,2,) ~ (t1,..., t), then f(z1,...,2,) = f(t1,..., t) by definition of f on Y. Hence
f induces a map

~N

F — G
(z1,...,za]  — (=) -+ - f(zn),

By construction f is a monoid homomorphism, therfore so is f, but since F and G are groups, fis
in fact a group homomorphism. Hence we have a commutative diagram

X —15a
i\[ q,/z
Fo

where i : X — F, x — [x] is the canonical inclusion.

= N

Finally, notice that the definition of  is forced if we want  to be a group homorphism, hence we

have uniqueness of f, and the universal property of Definition B.1 is satisfied. u
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Notation and Terminology

- To lighten notation, we identify [x,] € F with x4, hence [y,] with x;’

o', and [z1,...,2z,] with
z1---zp in F.

- A sequence (z1,...,2,) € E with each letter z; (1 < i < n) equal to an element x,, € X or
—1 is called a word in the generators {x, | a € I}. Each word defines an element of F via:

X
(z1,...,2n) — z1---z, € F. By abuse of lanquage, we then often also call z;---z, € F a word.
- Two words are called equivalent :<= they define the same element of F.

- (z1,...,2y) € Z, € E (n € Zxg), then n is called the length of the word (z1, ..., z,).

to this word.

Proposition B.5

Every group G is isomorphic to a factor group of a free group.

Proof: Let S := {g, € G | @ € I} be a set of generators for G (in the worst case, take /| = G). Let
X :={xq | a € I} be a set in bijection with S, and let F be the free group on X. Let i : X < F denote
the canonical inclusion.

f
X 3 G By the universal property of free groups the map f : X — G, x, — ¢gq4

i\[ ?l,f/ ////7l induces a unique group homomorphism f:F — G such that foi=f
E O/ ) Clearly f is surjective since the generators of G are all Im(f). Therefore
/// el the 1st Isomorphism Theorem yields G = F/ker(f).

can.proji /
/
/

F/ker(f)
We can now consider relations between the generators of groups:

Notation and Terminology

Let S := {gs € G | a € I} be a set of generators for the group G, let X := {xq | @ € I} be in
bijection with S, and let F be the free group on X.

By the previous proof, G =~ F/N, where N := ker(f) (go < Xq = xoN via the homomorphism f).

Any word (z1, ..., z,) in the x4's which defines an element of F in N is mapped in G to an expression
of the form

Z1zp=1¢, where Z; := image of z; in G under the canonical homomorphism.
In this case, the word (z1,...,z,) is called a relation in the group G for the set of generators S.

Now let R := {rg | B € J} be a set of generators of N as normal subgroup of F (this means that N

of G.

Then the ordered pair (X, R) is called a presentation of G, and we write

G ={X|R)={{Xa}ael | {r}pes -

- A word is said to be reduced if it has minimal length amongst all the words which are equivalent

is generated by the set of all conjugates of R). Such a set R is called a set of defining relations
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The group G is said to be finitely presented if it admits a presentation G = (X | R), where both
|X],|R| < oo. In this case, by abuse of notation, we also often write presentations under the form

’

G:<X1,...,X|X||I’1 :1,...,r‘R|=’I>.

Example 5

Pr

The cyclic group C, = {1,g,...,9" "} of order n € Z~1 generated by S := {g}. In this case, we
have:

X ={x}
R = {x"}
F=0&0=(Co)

Cp 5 Cpx > g has a kernel generated by x" as a normal subgroup. Then C, = {{x} | {x"}).

By abuse of notation, we write simply C, = (x| x") or also C, = (x| x" =1).

oposition B.6 (Universal property of presentations)

Let G be a group generated by S = {s, | a € I}, isomorphic to a quotient of a free group F on
X = {xq | a € I} in bijection with S. Let R := {rg | B € J} be a set of relations in G.
Then G admits the presentation G = (X | R) if and only if G satisfies the following universal

property:

X L5 H For every group H, and for every set-theoretic map f : X — H such that

ji /,:’z f(rg) = 15 V rg € R, there exists a unique group horlwmorphism f:G— H

G o such that f o j = f, where j : X — G, x4 — 5S4, and f is the unique extension
of f to the free group F on X.

Proof: "=" Suppose that G = (X | R). Therefore G =~ F/N, where N is generated by R as normal

subgroup. Thus the condition f(rg) = 14 ¥ rg € R implies that N < ker(f), since

F(zrgz™") = F(z) F(rg) F(z)" =14 VrigeR, VzeF.
——

=1y

Therefore, by the universal property of the quotient, f induces a unique group homomorphism

f:G=F/N — H such that fom = f, where m : F — F/N is the canonical epimorphism.
Now, if i : X — F denotes the canonical inclusion, then j = w0 i, and as a consequence we have

foj=*.
<" Conversely, assume that G satisfies the universal property of the statement (i.e. relatively to
X, F,R). Set N := R for the normal closure of R. Then we have two group homomorphisms:

: F/IN — G
Xa = Sa

induced by f : F — G, and
Yy: G — F/N

Sa = Xa

given by the universal property. Then clearly ¢ o ¢Y(sy) = @(X4) = sq for each a € [, so that
@ oy =ldg and similarly o ¢ = Idr/z. The claim follows. ]
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Ex

ample 6

Consider the finite dihedral group D>, of order 2m with 2 < m < co. We can assume that Dy, is
generated by

2
r := rotation of angle Fn and s := symmetry through the origin in R?.

Then {ry =~ G, < G, {s) = C, and we have seen that D,,, = {r) x {(s) with three obvious relations
1

rMm=1,s2=1,and srs ' = r1.
Claim: D,,, admits the presentation {r,s | r'" = 1,s2=1,srs1 = r_1>.
In order to prove the Claim, we let F be the free group on X := {x,y}, R := {x",y?, yxy~'x},
N < F be the normal subgroup generated by R, and G := F/N so that
G=&T7|x" =172 =1,7x7 'x=1).

By the universal property of presentations the map

f: {x,yt — Doy

X — T
y - S
induces a group homomorphism
f: G — Dy,
X =
gy = s,

which is clearly surjective since Do, = {r,s). In order to prove that f is injective, we prove that G

is a group of order at most 2m. Recall that each element of G is an expression in X, 7, X', g,

hence actually an expression in X, 7, since x_' = x"~" and §~' = §. Moreover, gxg ' = X~
implies Tx = X7, hence we are left with expressions of the form

X" with0<a<m-—1and0<b<1.
Thus we have |G| < 2m, and it follows that f is an isomorphism.
Notice that if we remove the relation r™ =1, we can also formally define an infinite dihedral group
Dy, via the following presentation

Dy :={r,s|s*>=1,srs " =r71).

eorem B.7

Let G be a group generated by two distinct elements, s and t, both of order 2. Then G = Dap,
where 2 < m < 0. Moreover, m is the order of st in G, and

G={(s,t|s>=1,t2=1,(st)" =1).

(m = oo simply means 'no relation".)

Proof: Set r := st and let m be the order of r.

Firstly, note that m > 2, since m =1 = st =1 = s = t—1 = tas t?=1. Secondly, we have the
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relation srs™' = r=7, since
srsTl = s(s t)s ' =ts =t""s = (st) " =171,
——
=1¢

Clearly G can be generated by r and s as r = st and so t = sr.
Now, H :={r) = C, and H < G since

srs'=r'eH and rrr'=reH (or because |G: H|=2).

Set C:={s) =~ C.
Claim: s ¢ H.
Indeed, assuming s € H yields s = r' = (st)’ for some 0 < i < m — 1. Hence

1 252 = S(St)i = (ts)i71t: (tst)s(tst)’
length i—1 length i—1

so that conjugating by t, then s, then .. ., then t, we get 1 = s, contradicting the assumption that o(s) = 2.
The claim follows.

Therefore, we have proved that G = HC and H n C = {1}, so that G = H x C = D,,, as seen in the
previous section.

Finally, to prove that G admits the presentation (s, t|s?> = 1,t> =1, (st)™ = 1), we apply the universal
property of presentations twice to the maps

f: {xx} — (s t|s?2=1,=1,(st)"=1)
Xs — s
X — st

and

g: {ysyy — G={rs|rm=1s=1srs""1=1)

Ys - s
Yt — sr .

This yields the existence of two group homomorphisms

f:G={rs|rm=1,s=1srs"=1)—{(s,t|s>=1,2=1,(st)" =1)
and
Giis,t|s?2=1,2=1,(st)"=1)—G={r,s|rm=1,s°=1,srs" =1)
such that gf = Id and fg = Id. (Here you should check the details for yourself!) [ |

C Representation theory and R-bilinear forms

We assume throughout this section that W is an arbitrary group, 0 : W — GL(V) an arbitrary
representation of W over a finite-dimensional R-vector space V (i.e. a group homomorphism from W
to GL(V)) and we consider its dual representation ¢* defined by
o*: W — GL(V*)
wo o o*(w) = (a(w™)).

Given w e W and v e V we set w.v := g(w)(v) and given w e W and f € V*, we set w.f := o*(w)(f).

We present here some standard results of representation theory, which we partially accept without
proof. We need the following terminology:
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Definition C.1
(@) A subspace U <V is called W-invariant if w.U c U (< w.U = U) for every we W.

(b) An endomorphism of o is an R-linear map ¢ : V — V such that ¢(w.v) = w.@(v) (ie.
p(o(w)(v)) = a(w)(e(v))) for every we W and ve V.

(c) The representation o is called irreducible if V has exactly two distinct W -invariant subspaces,
namely {0} and V itself

(d) The representation o is called absolutely irreducible if o is irreducible and any endomor-
phism ¢ of g has the form ¢ = A-1dy for some A € R.

(e) An R-bilinear form B : V x V. — R is called W -invariant if

B(w.v,w.v') = B(v,V) Ywe W, Vv,V eV.

Maschke’s Theorem (over R)

Assume W is a finite group and let 0 : W — GL(V) be is a representation of W. If U< V is a
W-invariant subspace, then there exists a W-invariant subspace U’ < V such that W = U@ U'.

Proof: Omitted. [}

Proposition C.2

Let 0 : W — GL(V) be an absolutely irreducible representation of W and let B: V x V — R
be a non-zero W-invariant R-bilinear form. Then:

(@) B is non-degenerate;

(b) any W-invariant R-bilinear form B' : V x V. — R is a scalar multiple of B.

Proof: Set B: V —» V¥, u— B(—,u).

Claim 1: Bis W-invariant <= B is a so-called homomorphism of representations between ¢ and o*,
in other words such that B(w.v) = w.B(v) Ywe W,Vve V.,

Proof of Claim 1: Exercise!

(a) It follows from Claim 1 that ker B is W-invariant, because for every w € W we have:

uekerB = B(wu)=w. Blu) =0 = w.uckerB.
—
=0
Now, as B is non-zero, ker B # V, hence the only possibility remaining is ker B = {0} because we
assume that o is irreducible. It follows that B is injective, and hence bijective, because dimg V' < o0
implies that dimg V = dimg V*. Therefore, B is non-degenerate.
(b) Let B/: V x V — R be a second W-invariant R-bilinear form. Since B is non-degenerate by (a),
B:V — V* is an isomorphism. Therefore, there exists an R-linear map ¢ : V — V such that

B'(V',v)=B(V,¢() VvV, veV.
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Concretely, one may take ¢ = B~ B, since B'(—,v) = é’(v) =Bo o(v) = B(—, p(v)).

Now, since B and B’ are W-invariant, by Claim 1, both B and B’ are homomorphisms between ¢
and o*, therefore so is ¢ = B~ 0 B.

Furthermore, o being absolutely irreducible, there exists A € R such that ¢ = A-Idy. Hence

B'(V',v) = B(V, ¢(v)) =B\, A-v)=A-B(V,v)

for every v/, v € V and it follows that B’ = A- B.

41



Index of Notation

General symbols
C

ldps

Im(f)

ker (@)

N
No

\l/\lN;UrO'U

Q

Z>G! Zga, Z<a

=

>

=

X

QO x MDD C e

L2k W<

field of complex numbers
identity map on the set M
image of the map f

kernel of the morphism ¢

the natural numbers without 0
the natural numbers with 0
the prime numbers in Z

field of rational numbers

field of real numbers

ring of integer numbers
{meZ|mz>=a(resp.m>a,m=>=a,m<a)}
cardinality of the set X
Kronecker’s delta

union

disjoint union

intersection

summation symbol
cartesian/direct product
semi-direct product

direct sum

empty set

for all

there exists

isomorphism

restriction of the map f to the subset S
injective map

surjective map
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Algebra
Aut(G)

2,

Cin

Ca(x)
Ca(H)

DZn

det

End(A)
G/N
GL,(K)
H<G H<G
NG
Nc(H)

N xg H
PGL,(K)
Sy
SL,(K)

V*

Z/mZ

‘o

g
(g)c G
G=(X|R)
|G : H|
xe G/N
{131

automorphism group of the group G
alternating group on n letters

cyclic group of order m in multiplicative notation
centraliser of the element x in G

centraliser of the subgroup H in G

dihedral group of order 2n

determinant

endomorphism ring of the abelian group A
quotient group G modulo N

general linear group over K

H is a subgroup of G, resp. a proper subgroup
N is a normal subgroup G

normaliser of H in G

semi-direct product of N in H w.rt. 6
projective linear group over K

symmetric group on n letters

special linear group over K

R-dual of the R-vector space V

cyclic group of order m in additive notation
transpose of the linear map/matrix ¢
conjugate of the group element g by x, i.e. gxg~
subgroup of G generated by g

presentation for the group G

index of the subgroup H in G

class of x € G in the quotient group G/N
trivial group

1
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