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Chapter 1. Definitions and Examples

The aim of this chapter is to introduce Coxeter groups in all generality, consider some important exam-
ples, and give a first description of the finite ones. In the next chapters we will give a formal proof of
their classification.

References:
[Hum90] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced

Mathematics Press, vol. 29, Cambridge University Press, Cambridge, 1990.

1 Coxeter systems
Coxeter groups are groups defined by a presentation as follows.

Definition 1.1 (Coxeter system)
A Coxeter system is a pair pW,Sq such that

(a) W is a group;

(b) S “ ts1, . . . , snu (n P Zą0) is a finite set of generators for W ; and

(c) W admits the presentation

W “ xs1, . . . , sn | psisjqmij “ 1 @ i ď jy ,

where mii “ 1 for each 1 ď i ď n, and mij P t2, 3, . . . ,8u if i ă j .

Remark 1.2
Below are some elementary consequences of Definition 1.1.

(1) mii “ 1 ñ s2
i “ 1 for each 1 ď i ď n. As we may assume that s1, . . . , sn ‰ 1, all the

generators si P S have order 2 and s´1
i “ si.

(2) We refer to W itself as a Coxeter group if the underlying above presentation is implicitly
understood.

7



Notizen zum Proseminar: Endliche Coxeter-Gruppen WS 2019/20 8

(3) If i ă j , then psisjqmij “ 1 by definition and conjugation by sj yields

1 “ sj1sj “ sjpsisjqmijsj “ psjsiqmij sjsj
loomoon

“1

“ psjsiqmij .

Thus we may set mji :“ mij and the relation psjsiqmji “ 1 holds as well, but is superfluous.

(4) mij “ 2 ðñ 1 “ psisjq2 “ sisjsisj “ sisjs´1
i s´1

j “ rsi, sj s ðñ si and sj commute.

(5) If mij is even, then psisjqmij{2 “ psjsiqmij{2; and
if mji is odd, then sisjsisj ¨ ¨ ¨ sjsi

looooooomooooooon

mij terms

“ sjsisjsi ¨ ¨ ¨ sisj
looooooomooooooon

mij terms

.

(6) We will prove that mij is precisely the order of sisj .

(7) By the above M :“ pmijq1ďi,jďn is a symmetric matrix with all diagonal entries equal to 1.
This matrix is called the Coxeter matrix associated to the Coxeter system pW,Sq.

2 Coxeter graphs
Henceforth, by graph, we understand a pair pS, Aq, where S is a finite set and A is a subset of PpSq
consisting of 2-element subsets of S. The elements of S are the vertices of the graph and the elements
of A are the edges of the graph. Furthermore, a weighted graph is a pair pG,φq, where G “ pS, Aq is
a graph and φ : A ÝÑ Zą0 Y t8u is a map. The valies of φ are the weights associated of the edges.

Definition 2.1 (Coxeter graph)
The Coxeter graph associated to a Coxeter system pW,Sq with S “ ts1, . . . , snu and Coxeter matrix
pmijq1ďi,jďn is the weighted graph having S as set of vertices and edges defined and weighted as
follows:

(i) if mij P t1, 2u there is no edge between si and sj , and

(ii) if mij ě 3 there is an edge between si and sj with weight mij .

Moreover, by convention, the weight of an edge is written above it, unless the weight is 3, in which
case it is always omitted.

Example 1 (The Coxeter graph F4)
The Coxeter group
W “ xs1, s2, s3, s4 | s2

1 “ s2
2 “ s2

3 “ s2
4 “ 1, ps1s2q

3 “ 1, ps1s3q
2 “ 1, ps1s4q

2 “ 1, ps2s4q
2 “ 1,

ps2s3q
4 “ 1, ps3s4q

3 “ 1y
yields the following Coxeter graph and Coxeter matrix:

‚ ‚ ‚ ‚
4 and

¨

˚

˚

˝

1 3 2 2
3 1 4 2
2 4 1 3
2 2 3 1

˛

‹

‹

‚
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Remark 2.2
The data contained in the Coxeter system pW,Sq is equivalent to the data contained in the asso-
ciated Coxeter matrix and equivalent to the data contained in the associated Coxeter graph. If a
Coxeter graph G is given, then we denote by W pGq the associated Coxeter group.

Example 2 (The Coxeter graph An (n ě 2))
The Coxeter graph

An ‚
s1

‚
s2

‚
s3

‚
sn´1

‚
sn

yields the Coxeter group

W pAnq “ xs1, . . . , sn | s2
i “ 1@ 1 ď i ď n, psisjq2 “ 1 if i ď j ´ 2, psisi`1q

3 “ 1@ 1 ď i ď n´ 1y

and the map

W pAnq ÝÑ Sn`1
si ÞÑ pi i` 1q

defines a group isomorphism between W pAnq and the symmetric group of degree n ` 1. (Give a
proof, if time permits. In particular, show how to use the universal property of presentations in order
to prove that the above map defines a group homomorphism. The surjectivity is obvious, while the
injectivity requires more arguments.)

In the sequel, we will prove that we may see W pAnq as a finite group of isometries of Rn generated
by reflections.

3 Irreducibility
The idea of irreducibility is to define elementary building blocks for the the theory of Coxeter systems,
so that an arbitrary Coxeter group can be build as a direct product of these elementary building blocks.

Definition 3.1 (Irreducible Coxeter system)
A Coxeter system pW,Sq is called irreducible if the corresponding Coxeter graph is connected. By
abuse of language, we may also say that the Coxeter group W , or the Coxeter Graph, is irreducible.

Lemma 3.2
Assume G “ G1 \ G2 is a disconnected Coxeter graph, where both G1 and G2 have non-empty
vertex sets and no edge of G links a vertex of G1 to a vertex of G2. Then

W pGq – W pG1q ˆW pG2q .

Proof : Exercise!
[Use the universal property of presentations, in order to define a homomorphism from W pGq to W pG1q ˆ
W pG2q. Prove that it is bijective. Emphasise why it is necessary that G1 and G2 are disjoint.]
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Consequence 3.3
An induction argument shows that the Coxeter graph G associated to a Coxeter system pW,Sq can
be decomposed into connected components G “

Ům
i“1Gi such that

W pGq – W pG1q ˆ ¨ ¨ ¨ ˆW pGmq .

It follows that to classify the Coxeter groups, it is enough to classify the irreducible ones.

4 First vision of the finite Coxeter groups
In this section, we take a first look at the cases, where W is irreducible and finite. We will prove later
that the list below actually provides us with a complete classification of the finite Coxeter groups. Let
n be the cardinality of the set S of generators.

The case n “ 1
If n “ 1, then the Coxeter graph is forced to be

A1 ‚

or in other words consists of a single vertex and no edges. Then W pA1q “ xs1 | s2
1 “ 1y – C2.

The case n “ 2
If n “ 2, then the Coxeter graph is

I2pmq ‚ ‚ pm ě 3qm

with W pI2pmqq “ xs1, s2 | s2
1 “ s2

2 “ 1, ps1s2q
m “ 1y – D2m, namely the dihedral group of order

2m, which is the isometry group of the regular m-gone. (See Appendix B.) Notice that m “ 3 gives
again the graph A2. The case m “ 4 is rather known as B2, and the case m “ 6 as G2.

The case n “ 3
If n “ 3, then there are 3 pairwise distinct Coxeter graphs corresponding to finite Coxeter groups:

A3 ‚ ‚ ‚ with W pA3q – S4 ,

which is the isometry group of the regular 3-simplex;

B3 ‚ ‚ ‚ with W pB3q – C3
2 ¸S3 ,4

which is the isometry group of the cube and of the octahedron; and

H3 ‚ ‚ ‚ with W pH3q – A5 ˆ C2 ,5

which is the isometry group of the dodecahedron and of the icosahedron.
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The case n “ 4
If n “ 4, then there are 5 pairwise distinct Coxeter graphs corresponding to finite Coxeter groups:

A4 ‚ ‚ ‚ ‚ with W pA4q – S5 ,

which is the isometry group of the regular 4-simplex;

B4 ‚ ‚ ‚ ‚ with W pB4q – C4
2 ¸S4 ,4

which is the isometry group of the regular hypercube in R4;

‚

D4 ‚ ‚ with W pD4q – C3
2 ¸S4

‚

which does not correspond to any isometry group of a regular polytope;

F4 ‚ ‚ ‚ ‚ with W pF4q – W pD4q ¸S3 ,4

which is the isometry group of an exceptional regular polytope with 24 octahedral faces;

H4 ‚ ‚ ‚ ‚ with |W pH4q| “ 14400 ,5

which is the isometry group of two regular polytopes (dual to each other) with 100 (resp. 600)
dodecahedral (resp. tetrahedral) faces.

The case n ě 5
If n ě 5, then the pairwise distinct Coxeter graphs corresponding to finite Coxeter groups are:

An ‚ ‚ ‚ ‚ ‚ with W pAnq – Sn`1 ,

which is the isometry group of the regular n-simplex;

Bn “ Cn ‚ ‚ ‚ ‚ ‚ with W pBnq – Cn2 ¸Sn ,4

which is the isometry group of the regular hypercube in Rn;
‚

Dn ‚ ‚ ‚ ‚ ‚ with W pDnq – Cn´1
2 ¸Sn ;

‚

and the three so-called exceptional graphs:
‚

E6 ‚ ‚ ‚ ‚ ‚

‚

E7 ‚ ‚ ‚ ‚ ‚ ‚

and
‚

E8 ‚ ‚ ‚ ‚ ‚ ‚ ‚

with |W pE6q| “ 27 ¨ 34 ¨ 5, |W pE7q| “ 210 ¨ 34 ¨ 5 ¨ 7, and |W pE8q| “ 214 ¨ 35 ¨ 52 ¨ 7 .



Chapter 2. Algebraic and Geometric Properties

The aim of this chapter is to study geometric properties of the Coxeter systems pW,Sq. Provided W
is finite, in order to achieve this goal, we are going to represent W as a group generated by reflec-
tions w.r.t. hyperplanes in the n-dimensional euclidean space Rn, where n “ |S|. This will enable
us to reduce the classification problem of the finite Coxeter groups to a problem of linear algebra over R.

References:
[Hum90] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced

Mathematics Press, vol. 29, Cambridge University Press, Cambridge, 1990.

5 Deletion and exchange conditions
Throughout this section W is a group generated by a finite set S Ă W zt1W u and we assume that
s2 “ 1 for each s P S.

Definition 5.1
Let w P W .

(a) An expression w “ s1 ¨ ¨ ¨ sr with s1, . . . , sr P S is said to be reduced if any expression of w
in the generators in S possesses at least r terms.

(b) The length of w ‰ 1, denoted `pwq, is the number of terms in a reduced expression of w . By
convention, `p1W q “ 0.

Note: we need to prove that `pwq is well-defined. Assuming it is, then we have the following properties:

Proposition 5.2 (Elementary properties of the length)

(1) `pwq “ 1 ðñ w P S.

(2) `pww 1q ď `pwq ` `pw 1q for every w,w 1 P W .

(3) `pw´1q “ `pwq for every w P W .

(4) For each s P S and each w P W , we have `pswq “ `pwq ˘ 1.

12
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Proof : (1)–(3): exercise!
(4): Since the generators in S all have order 2 the map ε : W ÝÑ t˘1u, t ÞÑ ´1@ t P S defines a group
homomorphism. Therefore:

¨ if w P W and `pwq is even, then εpwq “ 1,
¨ if w P W and `pwq is odd, then εpwq “ ´1.

Clearly `pswq “ `pwq ` 1 is a possible case and it is always true that `pswq ď `pwq ` 1. Now, assume
that `pswq ă `pwq ` 1, then

`pswq “ `pwq ´ n

where n P Zą0 is odd since
εpswq “ εpsqεpwq “ ´εpwq .

(In other words, the lengths of sw and w do not have the same parity.) Moreover,

`pwq “ `psswq ď `pswq ` 1 ðñ `pswq ě `pwq ´ 1 .

In other words, if `pswq ‰ `pwq ` 1, then `pswq “ `pwq ´ 1 .

Notation: if s1 ¨ ¨ ¨ sr is an expression in the generators s1, . . . , sr P S, then the notation

s1 ¨ ¨ ¨ ši ¨ ¨ ¨ sr

means that si is deleted from this expression. In other words, s1 ¨ ¨ ¨ ši ¨ ¨ ¨ sr “ s1 ¨ ¨ ¨ si´1si`1 ¨ ¨ ¨ sr .

Deletion Condition
We say that pW,Sq satisfies the deletion condition (DC) if for any non-reduced expression w “
s1 ¨ ¨ ¨ sr with s1, . . . , sr P S, there exists 1 ď i ă j ď r such that

w “ s1 ¨ ¨ ¨ ši ¨ ¨ ¨ šj ¨ ¨ ¨ sr .

Exchange Condition
We say that pW,Sq satisfies the exchange condition (EC) if for any reduced expression w “ s1 ¨ ¨ ¨ sr
with s1, . . . , sr P S and for any s P S such that `pswq ď `pwq, there exists 1 ď j ď r such that

w “ ss1 ¨ ¨ ¨ šj ¨ ¨ ¨ sr .

Proposition 5.3
Let pW,Sq be as above. The deletion condition (DC) and the exchange condition (EC) are equiva-
lent.

Proof :

"ñ" Assume (DC) holds. Let w “ s1 ¨ ¨ ¨ sr be a reduced expression and let s P S such that `pswq ď `pwq.
Then

sw “ ss1 ¨ ¨ ¨ sr
has r ` 1 terms, hence is not reduced. Therefore (DC) implies that 2 letters can be deleted from
this expression. We claim that one of these two letter must be s. Indeed, otherwise

sw “ ss1 ¨ ¨ ¨ ši ¨ ¨ ¨ šj ¨ ¨ ¨ sr ñ w “ s1 ¨ ¨ ¨ ši ¨ ¨ ¨ šj ¨ ¨ ¨ sr
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which contradicts the fact that the length of w is r. Therefore,

sw “ šs1 ¨ ¨ ¨ šj ¨ ¨ ¨ sr ñ w “ s2w “ spswq “ ss1 ¨ ¨ ¨ šj ¨ ¨ ¨ sr .

"ð" Assume now that (EC) holds and let w “ s1 ¨ ¨ ¨ sr with s1, . . . , sr P S be a non-reduced expression.
Let i :“ max s.t. sisi`1 ¨ ¨ ¨ sr is non-reduced (1 ď i ď r ´ 1). Then for siw 1 :“ sisi`1 ¨ ¨ ¨ sr , we have

(i) `psiw 1q ă r ´ i` 1; and
(ii) `psiw 1q ď r ´ pi` 1q ` 1 “ r ´ i “ `pw 1q .

Therefore (EC) implies that there exists an index j such that i`1 ď j ď r and w 1 “ sisi`1 ¨ ¨ ¨ šj ¨ ¨ ¨ sr .
It follows that

w “ s1 ¨ ¨ ¨ siw 1 “ s1 ¨ ¨ ¨ sisi`1 ¨ ¨ ¨ šj ¨ ¨ ¨ sr

Theorem 5.4 (Matsumoto)
The pair pW,Sq is a Coxeter system ðñ pW,Sq satisfies (DC) ðñ pW,Sq satisfies (EC).

Proof : Without proof in this seminar. A proof can be found in [?].

Theorem 5.5
Let W ď Opnq be a finite group generated by a finite set S of orthogonal reflections of Rn. Then
pW,Sq satisfies (DC), hence is a Coxeter system.

Proof : Without proof in this seminar. A proof can be found in [?].

Remark 5.6
Theorem 5.5 actually provides us with a method to obtain all the finite Coxeter systems listed in
Chapter 1.

6 Informal example: the dihedral groups
[ At this stage I will give an informal example on the board about the underlying geometry of the dihedral groups.]

7 Geometry and representations

From now on, we let pW,Sq be a Coxeter system with S “ ts1, . . . , snu and V be an n-dimensional
R-vector space with ordered basis pe1, . . . , enq.

Definition 7.1 (Canonical bilinear form, reflections and hyperplanes)

(1) The canonical bilinear form associated to pW,Sq is the R-bilinear form defined by

B : V ˆ V ÝÑ R
pei, ejq ÞÑ Bpei, ejq :“ ´ cos π

mij .

(2) For 1 ď i ď n, the reflection associated to ei and B is the reflection
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σi : V ÝÑ V
x ÞÑ x ´ 2Bpei, xqei

and the hyperplane associated to ei and B is Hi :“ kerBp´, eiq “ tx P V | Bpx, eiq “ 0u.

Remark 7.2 (Properties of B and σi)

(1) ¨ mii “ 1 ùñ Bpei, eiq “ ´ cosπ “ 1
¨ mij “ 2 ùñ Bpei, ejq “ ´ cos π

2 “ 0
¨ mij “ 8 ùñ Bpei, ejq “ ´ cos 0 “ ´1

(2) The form B is symmetric since mij “ mji for all 1 ď i, j ď n.

(3) Warning: B is not necessarily positive definite, so that B need not be a scalar product in
general.

(4) The reflection σi has order 2. Indeed, for all x P V , we have:

σi ˝ σipxq “ σi px ´ 2Bpei, xqeiq “ x ´ 2Bpei, xqei ´ 2Bpei, x ´ 2Bpei, xqeiqei

“ x ´ 2Bpei, xqei ´ 2

»

–Bpei, xq ´ 2Bpei, xqBpei, eiq
looomooon

“1

fi

fl ei

“ x ´ 2Bpei, xqei ´ 2 r´Bpei, xqs ei
“ x

Hence σi ˝ σi is the identity map.

(5) The map Bpei,´q is a non-zero R-linear form, so that its image is the whole of R. Therefore,
it follows from the Rank–nullity theorem that

dimRHi “ n´ dimRpImBpei,´qq “ n´ 1 .

(6) We have:

¨ σipxq “ x ðñ Bpei, xq “ 0 ðñ x P Hi, and
¨ σipeiq “ ei ´ 2 ¨ 1 ¨ ei “ ´ei.

Therefore σi is indeed a reflection of Hyperplane Hi.

Lemma 7.3
For each 1 ď i ď n the reflection σi is an R-linear transformation which is orthogonal with respect
to B. (One also says that the σi’s preserve B.)

Proof : The R-linearity is clear by definition. We only prove that σi (1 ď i ď n) is orthogonal with respect
to B. Notice that each x, y P Rn may be written as

x “ u` λei and y “ v ` µei with u, v P Hi, λ, µ P R
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since Hi is a hyperplane and ei R Hi. Therefore,

σipxq “ u´ λei and σipyq “ v ´ µei

by Remark 7.2(6) and it follows from the R-bilinearity of B that

Bpσipxq, σipyqq “ Bpu´ λei, v ´ µeiq “ Bpu, vq ´ λBpei, vq
loomoon

“0

´µ Bpu, eiq
looomooon

“0

`λµBpei, eiq

“ Bpu, vq ` λBpei, vq
loomoon

“0

`µ Bpu, eiq
looomooon

“0

`λµBpei, eiq

“ Bpu` λei, v ` µeiq
“ Bpx, yq ,

as required.

Theorem 7.4

(a) The map defined by

σ : W ÝÑ GLpV q
si ÞÑ σi

is a group homomorphism, called the canonical representation associated to W .

(b) Impσq Ď OpV ,Bq :“ tφ P GLpV q | φ preserves Bu.

(c) The integer mij is the order of sisj in W for all 1 ď i ă j ď n.

Proof : (a) By the universal property of presentations (B.6 of the Appendix), it suffices to check that the
relations defining W are mapped to the identity map on V by σ .
¨ For the relations s2

i “ 1 (1 ď i ď n), it is obvious since we have seen in 7.2(4) that σ2
i has

order 2.
¨ For the relations psisjqmij “ 1 with i ‰ j and 2 ď mij ă 8 , we consider the plane P :“

Rei ‘ Rej in Rn. Then the matrix of B|P : P ˆ P ÝÑ R w.r.t. the basis pei, ejq is
˜

1 ´ cos π
mij

´ cos π
mij

1

¸

and we compute

Bpλei ` µejq “ λ2 Bpei, eiq
looomooon

“1

`2λµBpei, ejq ` µ2 Bpej , ejq
looomooon

“1

“ λ2 ` 2λµp´ cos π
mij
q ` µ2

“ λ2 ` 2λµp´ cos π
mij
q ` µ2pcos2 π

mij
` sin2 π

mij
q

“

ˆ

λ´ µ cos π
mij

˙2
`

ˆ

µ sin π
mij

˙2
ě 0 .

Therefore B|P is positive definite and V “ P ‘ Q with Q “ PK the orthogonal subspace
to P w.r.t. to B. (Notice that B|P is also non-degenerate, since otherwise there would be a
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0 ‰ v P P such that B|Ppv, wq “ 0 for all w P P and in particular we would have B|Ppv, vq “ 0,
which contradicts the fact that B|P is positive definite.)
It follows that Hi “ eKi Ą PK “ Q and similarly Hj Ą Q. Thus σi|Q “ Id and σj |Q “ Id, so that
both σi and σj are entirely characterised by their restriction to P . In particular, whether the
relation pσiσjqmij “ Id holds can be tested on P . In fact, because P together with B|P can be
identified with the euclidean space R2 with its standard scalar product, by Theorem B.7 and
its proof, we have that pσiσjq|P is a rotation of angle 2π

mij
in P – R2 and hence pσiσjqmij “ Id.

(b) By Lemma 7.3, σi P OpV ,Bq for each 1 ď i ď n, whence Impσq Ď OpV ,Bq.
(c) We differentiate between two cases:

(i) mij ă 8: By (a), mij is the order of pσiσjq|P in P , that is ppσiσjq|Pqm ‰ Id if 1 ď m ă mij ).
But as σ is a group homomorphism, we must also have that psisjqm ‰ Id if 1 ď m ă mij , hence
mij is the order of sisj .

(ii) mij “ 8: By definition, we have

σipejq “ ej ´ 2Bpei, ejqei “ ej ` 2ei and σjpeiq “ ei ´ 2Bpej , eiqej “ ei ` 2ej .

Hence σipei ` ejq “ σjpei ` ejq “ ei ` ej and σiσjpei ` ejq “ ei ` ej . It follows that

σiσjpeiq “ σpei ` 2ejq “ σpei ` ejq ` σpejq “ ei ` ej ` ej ` 2ei “ 2pei ` ejq ` ei

and an induction yields

pσiσjqkpeiq “ 2kpei ` ejq ` ei @ k ě 1 .

In particular, pσiσjqkpeiq ‰ ei @ k ě 1, so that we must have that the order of σiσj is infinite,
and therefore so is the order of sisj since σ is a group homomorphism.

8 The dual representation
Let now V ˚ “ HomRpV ,Rq be the R-dual of V and let pb1, . . . , bnq denote the dual basis to the basis
pe1, . . . , enq of V . Recall from linear algebra that any endomorphism α P EndRpV q “ HomRpV , V q
induces an R-linear endomorphism

tα : V ˚ ÝÑ V ˚
f ÞÑ tαpfq :“ f ˝ α

and the matrix of tα w.r.t. the basis pb1, . . . , bnq is the transpose of the matrix of α w.r.t. the basis
pe1, . . . , enq.
Define

σ˚ : W ÝÑ GLpV ˚q
w ÞÑ σ˚pwq :“ tpσpw´1qq .

Lemma 8.1
The map σ˚ is a group homomorphism, called the dual representation (to σ ).

Proof : Let u,w P W . Then

σ˚puwq “ tpσppuwq´1qq “ tpσpw´1q ˝ σpu´1qq “ tpσpu´1qq ˝ tpσpw´1qq “ σ˚puq ˝ σ˚pwq .
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Furthermore, let us denote the evaluation of f P V ˚ “ HomRpV ,Rq in v P V as follows:

x´,´y : V ˚ ˆ V ÝÑ V
pf , vq ÞÑ xf , vy :“ fpvq

and moreover, given w P W , v P V and f P V ˚, we set w.v :“ σpwqpvq and w.f :“ σ˚pwqpfq.

Lemma 8.2
We have xw.f, vy “ xf , w´1.vy @ w P W , @ v P V and @ f P V ˚.

Proof :

xw.f, vy “ pw.fqpvq “ pσ˚pwqpfqq pvq “
`tpσpw´1qqpfq

˘

pvq “
`

f ˝ σpw´1q
˘

pvq
“ f

`

σpw´1qpvq
˘

“ xf , w´1.vy .

9 Half-spaces and chambers
Given 1 ď i ď n, we set

Hi :“ kerpx´, eiyq “ tf P V ˚ | fpeiq “ 0u ,

which obviously admits the basis pb1, . . . , b̌i, . . . , bnq. Moreover, we let

D`pHiq :“ tf P V ˚ | xf , eiy ą 0u and D´pHiq :“ tf P V ˚ | xf , eiy ă 0u .

Definition 9.1

(a) The subset C :“ tf P V ˚ | xf , eiy ą 0 @ 1 ď i ď nu “
Şn
i“1D`pHiq of V ˚ is called the

fundamental chamber of of V ˚.

(b) The subsets w.C :“ tw.f | f P Cu of V ˚ are called the chambers of V ˚.

Lemma 9.2
For each si P S the operation si.f for f running through V ˚ is a reflection of hyperplane Hi which
exchanges D`pHiq and D´pHiq.

Proof : To begin with, for each 1 ď j ‰ i ď n and every v P V we have:

xsi.bj , vy
Lem.8.2
“ xbj , si.vy “ xbj , v ´ 2Bpv, eiqeiy “ xbj , vy ´ 2Bpv, eiq

δji
hkkikkj

xbj , eiy
“ xbj , vy

Hence si.bj “ bj , which proves that the map si.p´q is the identity on the hyperplane Hi.
Furthermore, if i “ j , then the above calculation yields

xsi.bi, vy “ xbi, vy ´ 2Bpv, eiq ,
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so that si.bi “ bi ´ 2Bp´, eiq. Now, on the one hand bi P D`pHiq since xbi, eiy “ 1 ą 0, and on the
other hand, si.bi P D´pHiq since

xsi.bi, eiy “ xbi, eiy ´ 2Bpei, eiq “ 1´ 2 ¨ 1 “ ´1 ă 0 .

It follows that si.f P D´pHiq for every f P D`pHiq, and conversely si.f P D`pHiq for every f P D´pHiq,
as required.

Exercise 9.3
Let w P W and si P S. Then,

#

w.C Ď D`pHiq ðñ `psiwq “ `pwq ` 1 ; and
w.C Ď D´pHiq ðñ `psiwq “ `pwq ´ 1 .

Proof : Please write the solution on your own.

Theorem 9.4 (Tits)
Let C be the fundamental chamber in V ˚. Then

w.C X C “ H @w P W zt1u .

Proof : Let w P W zt1u and let w “ t1 ¨ ¨ ¨ tr with t1, . . . , tr P S be a reduced expression for w . Then
`pt1wq “ `pwq ´ 1 and it follows from Exercise 9.3 that

w.C Ď D´pH1q and C Ď D`pH1q .

Hence, w.C X C Ď D´pH1q XD`pH1q “ H by definition.

Fundamental Corollary 9.5
Both σ : W ÝÑ GLpV q and σ˚ : W ÝÑ GLpV ˚q are injective. In particular, W , σpW q and σ˚pW q
are isomorphic groups.

Proof : We need to prove that the kernels of σ and σ˚ are trivial. So, let w P W .

¨ To begin with, σ˚pwq “ IdV˚ ùñ w.f “ σ˚pwqpfq “ f for every f P V ˚, so that w.C “ C by
definition and it follows from the theorem of Tits that w “ 1. Hence kerpσ˚q “ t1u.

¨ Next, we use the fact that σ˚pwq “t σpw´1q. It follows that:

σpwq “ IdV ùñ σpw´1q “ Id´1
V “ IdV ùñ tσpw´1q “t IdV “ IdV˚ .

Therefore kerpσ˚q “ t1u ùñ kerpσq “ t1u as well.

Proposition 9.6 (Requires Einführung in die Topologie)
The subgroup σpW q of GLpV q is closed and discrete — where GLpV q is seen as topological
subspace of MnpRq » pRn

2 , standard topologyq and endowed with the induced topology.

Proof : Accepted without proof.
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10 Irreducibility of representations
For the terminology used in this section, we refer to Appendix C and we note that the canonical bilinear
form B is W -invariant by Theorem 7.4(b).

Proposition 10.1
If pW,Sq is an irreducible Coxeter system, then the following holds:

(a) Any proper W -invariant subspace of V is contained in kerB.

(b) w.u “ u for every w P W and every u P kerB, so that in particular kerB is W -invariant.

Proof : Set U :“ kerB “ tx P V | Bpx, yq “ 0 @y P V u.

(a) Let V 1 Ĺ V be a W -invariant subspace of V . We treat two cases:

Case 1: D an index i such that ei P V 1. Let j ‰ i such that mij ě 3, so that cos π
mij
ą 0. Thus,

V 1 Q sj .ei “ ei ´ 2Bpei, ejqej “ ei ´ 2p´ cos π
mij
qej

and
0 ‰ 2Bpei, ejqej “ ei ´ sj .ei P V 1 ùñ ej P V 1 .

Since pW,Sq is irreducible, its Coxeter graph is connected and the above argument proves
that ek P V 1 for every 1 ď k ď n, i.e. V 1 “ V , which is a contradiction.

Case 2: ei ‰ V 1 for every 1 ď i ď n. Now if v 1 P V 1, then

si.v 1 “ v 1 ´ 2Bpei, v 1qei ùñ 2Bpei, v 1qei “ v 1
loomoon

PV 1
´ si.v 1
loomoon

PV 1

P V 1

and since ei ‰ V 1, we must have Bpei, v 1q “ 0. Hence v 1 P U and V 1 Ď U .
(b) For each 1 ď i ď n and each u P U holds Bpei, uq, so that

si.u “ σpsiqpuq “ u´ 2Bpei, uq
looomooon

“0

ei “ u .

As W is generated by S, it follows that w.u “ u for every w P W and u P U .

Theorem 10.2
Let pW,Sq be an irreducible Coxeter system. Then:

σ is irreducible ðñ B is non-degenerate

In which case σ is in fact absolutely irreducible.

Proof : Propostion 10.1 implies that any W -invariant proper subspace of V is contained in U :“ kerB.
Therefore, we have the following equivalences:

σ is irreducible ðñ there is no proper W -invariant subspace of V
Prop. 10.1
ðñ U “ t0u

Definition
ðñ B is non-degenerate
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Now we claim that σ irreducible ùñ σ absolutely irreducible.
Let 1 ď i ď n. Then σpsiq “: σi is a reflection of V with fixed hyperplane Hi “ tv P V | Bpei, vq “ 0u.
Let α be an endomorphism of σ . Then,

α ˝ pσi ´ IdV qpvq “ αpsi.v ´ vq “ αpsi.vq ´ αpvq “ si.αpvq ´ αpvq “ pσi ´ IdV q ˝ αpvq @ v P V .

Hence α ˝ pσi ´ IdV q “ pσi ´ IdV q ˝ α .
Moreover,

pσi ´ IdV qpvq “ pσpsiq ´ IdV qpvq “ v ´ 2Bpei, vqei ´ v “ ´2Bpei, vqei
for every v P V , so that Impσi ´ IdV q “ Rei. Hence by the above αpReiq Ď Rei, and therefore there
exists λ P R such that αpeiq “ λei. Then V 1 :“ tv P V | αpvq “ λ ¨ vu is by construction a W -invariant
subspace of V containing Rei (hence non-zero) since:

@w P W,@ v 1 P V 1, αpw.v 1q “ w.αpv 1q “ w.pλ ¨ v 1q “ λ ¨ pw.v 1q ñ w.v 1 P V 1

Therefore, as we assume that σ is irreducible, we must have V ‰ V 1 and it follows that α “ λ ¨ IdV , as
required.



Chapter 3. Classification of the finite Coxeter groups

The aim of this chapter is now to classify the finite Coxeter groups using linear algebra and graph
theory. First we see that the finiteness of a Coxeter group is equivalent to the fact that the associated
canonical bilinear form is positive definite. Second we use this fact to provide a constructive proof of
all possible finite Coxeter groups as we already described them in Chapter 1.

References:
[Hum90] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced

Mathematics Press, vol. 29, Cambridge University Press, Cambridge, 1990.

11 The finiteness theorem

Theorem 11.1 (Finiteness Theorem)
Let pW,Sq be an irreducible Coxeter system. Then W is finite if and only if the associated canonical
R-bilinear form B is positive definite.

Proof :

"ñ" Assume that W is a finite group. Let U :“ kerB. Clearly U Ĺ V since e.g. Bpe1, e1q “ 1 ‰ 0.
Thus by Maschke’s Theorem (see Appendix C) there exists a W -invariant subspace U 1 Ď V such
that V “ U ‘ U 1. However, by Proposition 10.1(a), if U 1 is a W -invariant subspace of V , then
either U 1 Ď U or U 1 “ V . Hence U 1 “ V and it follows immediately that U “ t0u, so that B is
non-degenerate. It now follows from Theorem 10.2 that σ is absolutely irreducible.
Now, we may consider the standard scalar product x´,´yV on V . It is then easily checked that

A : V ˆ V ÝÑ R, pv, v 1q ÞÑ Apv, v 1q :“
ÿ

wPW
xw.v, w.v 1yV

is an R-bilinear form, which is W -invariant (Exercise!) and positive definite (since x´,´yV is). By
Proposition C.2(b), there exists λ P R such that B “ λA. In particular

1 “ Bpe1, e1q “ λApe1, e1q
looomooon

ą0

ùñ λ ą 0 .

It now follows that B is positive definite since A is.

"ð" We omit this part of the proof as it requires arguments using the Einführung in die Topologie.

22
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Terminology: If pW,Sq is a Coxeter system and ΓW is the associated Coxeter graph, then by abuse
of language we say that ΓW is positive definite if the associated canonical bilinear form B is positive
definite. We also write detpΓW q instead of detpBq.

12 The classification

As we have seen in Chapter 1, in order to classify the Coxeter systems, and hence the Coxeter groups,
it is enough to classify the irreducible Coxeter systems, in which case the associated Coxeter graph ΓW
is connected.

Moreover, by the Finiteness Theorem, finding the irreducible Coxeter systems pW,Sq such that W is
finite is equivalent to finding the positive definite associated canonical R-bilinear forms B, the definition
of which depends only ΓW . Hence we are reduced to the following graph theory problem:

Which are the connected Coxeter graphs ΓW for which the associated canonical R-bilinear
form is positive definite?

Theorem A (Positive definite Coxeter graphs)
Let ΓW be an irreducible Coxeter graph with n P Zą0 vertices. Then ΓW is positive definite if and
only if ΓW belongs to the following list (List A):

An ‚ ‚ ‚ ‚ ‚ pn ě 1q
Bn “ Cn ‚ ‚ ‚ ‚ ‚ pn ě 2q4

Dn
‚

‚ ‚ ‚ ‚ ‚ pn ě 4q
‚

E6
‚

‚ ‚ ‚ ‚ ‚ pn “ 6q

E7
‚

‚ ‚ ‚ ‚ ‚ ‚ pn “ 7q

E8
‚

‚ ‚ ‚ ‚ ‚ ‚ ‚ pn “ 8q

F4 ‚ ‚ ‚ ‚ pn “ 4q4

G2 ‚ ‚ pn “ 2q6

H3 ‚ ‚ ‚ pn “ 3q5

H4 ‚ ‚ ‚ ‚ pn “ 4q5

I2pmq ‚ ‚ pn “ 2, m P t5u Y Zě7q
m
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Theorem B (Positive semi-definite Coxeter graphs)
Let ΓW be an irreducible Coxeter graph with q ` 1 vertices (q P Zą0). Then ΓW is positive
semi-definite if and only if ΓW belongs to the following list (List B):

rA1 ‚ ‚ pq “ 1q8

rAq

‚ ‚

‚ ‚

‚ ‚

‚ ‚

pq ě 2q

rB2 “ rC2 ‚ ‚ ‚ pq “ 2q4 4

rBq

‚

‚ ‚ ‚ ‚ ‚ pq ě 4q

‚

4

rCq ‚ ‚ ‚ ‚ ‚ ‚ pq ě 3q4 4

rDq
‚ ‚

‚ ‚ ‚ ‚ pq ě 4q
‚ ‚

rF4 ‚ ‚ ‚ ‚ ‚ pq “ 4q4

rG2 ‚ ‚ ‚ pq “ 2q6

rE6

‚

‚

‚ ‚ ‚ ‚ ‚ pq “ 6q

rE7
‚

‚ ‚ ‚ ‚ ‚ ‚ ‚ pq “ 7q

rE8
‚

‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ pq “ 8q

Furthermore, if ΓW is positive semi-definite but not positive definite, then dimRpkerBq “ 1.

We are going to prove Theorem A and Theorem B together in two seperate proofs, the first one dealing
with the sufficient condition (i.e. the direction "ð") and the second one dealing with the necessary
condition (i.e. the direction "ñ").
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For the sufficient condition, we need the following standard Criterion from linear algebra, which we
accept here without proof:

Criterion for positive (semi-)definiteness of a symmetric R-bilinear form
Let B be a symmetric R-bilinear form on an R-vector space of dimension n P Zą0 with matrix
MatpBq. For each 1 ď i ď n, let Bi denote the principal minor of MatpBq of size i. Then:

(a) B is positive definite ðñ detpBiq ą 0 for each 1 ď i ď n.

(b) B is positive semi-definite with dimRpkerBq “ 1 ðù detpBiq ą 0 for each 1 ď i ď n´ 1 and
detpBq “ 0.

Proof of Theorem A and Theorem B: sufficient condition "ð" :
We need to prove that:

ΓW P List A ùñ ΓW is positive definite; and
ΓW P List B ùñ ΓW is positive semi-definite.

We proceed by induction on the number n of vertices of the graph ΓW . Denote by MatpBq the matrix
of B w.r.t. the ordered basis pe1, . . . , enq.

¨ n “ 1: A1 ‚ yields MatpBq “ p1q, hence detpBq “ 1 ą 0.

¨ n “ 2: A2 ‚ ‚ yields MatpBq “
´

1 ´ 1
2

´ 1
2 1

¯

, hence detpBq “ 3
4 ą 0.

B2 ‚ ‚
4 yields MatpBq “

ˆ

1 ´
?

2
2

´
?

2
2 1

˙

, hence detpBq “ 1
2 ą 0.

G2 ‚ ‚
6 yields MatpBq “

ˆ

1 ´
?

3
2

´
?

3
2 1

˙

, hence detpBq “ 1
4 ą 0.

I2pmq ‚ ‚
m yields MatpBq “

´

1 ´ cos π
m

´ cos π
m 1

¯

, hence detpBq “ 1´ cos2p πm q ą 0.
rA1 ‚ ‚

8 yields MatpBq “
´

1 ´ cos π
8

´ cos π
8

1

¯

, hence detpBq “ 0.

Hence for n “ 1, 2 all the graphs in List A and List B satisfy the above criterion. We may now assume
that

¨ n ě 3: let ΓW be in List A or List B with n ě 3 vertices. We now remove an end vertex of ΓW ,
apart for rAn for which we may remove an arbitrary vertex. We denote by Γ1W the resulting graph
and we observe that Γ1W is in List A. Therefore by the induction hypothesis the matrix B1 of Γ1W is
positive definite. Using the Criterion, it suffices to prove that detpMatpBqq ą 0 if ΓW P List A and
detpMatpBqq “ 0 if ΓW P List B, where

MatpBq “
ˆ

B1 ˚

˚ 1

˙

.

A straightforward computation (Exercise!) yields:

detpAnq “ n`1
2n ą 0 pn ě 3q, detpF4q “

1
24 ą 0 ,

detpBnq “ 1
2n´1 ą 0 pn ě 3q, detpH3q “

3´
?

5
8 ą 0 ,

detpDnq “
1

2n´2 ą 0 pn ě 4q, detpH4q “
7´3

?
5

32 ą 0 ,

detpEnq “ 9´n
2n ą 0 pfor n “ 7, 8, 9q, detprXq “ 0 for rX in List B .
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For the necessary condition, we will need to consider the subgraphs of ΓW . We recall the following
notion from graph Theory:

Definition 12.1 (Subgraph)
Let ΓW be an irreducible Coxeter graph. We call subgraph of ΓW a graph Γ1W formed from a subset
of the vertices and edges of ΓW , where the weight of an edge of Γ1W is less or equal to the weight
of the same edge seen as an edge of ΓW .

Proposition 12.2
Let ΓW be an irreducible Coxeter graph with n vertices (n P Zą0), which is either positive definite
or positive semi-definite. Then any proper subgraph of ΓW is positive definite.

Proof : Let Γ1W be a proper subgraph of ΓW . W.l.o.g. we may assume that the vertices of ΓW are labelled
such that the vertices of Γ1W are s1, . . . , sm with m ď n.
Write m1ij for the weight of the edge psi, sjq in Γ1W . Let MatpBq “ pbijq be the matrix of the canonical
bilinear form B associated with ΓW and MatpB1q “ pb1ijq be the matrix of the canonical bilinear form B1
associated with Γ1W .
Clearly:

m1ij ď mij ùñ b1ij “ ´ cos π
m1ij

ě ´ cos π
mij

“ bij

Assume now that Γ1W is not positive definite. Thus there exists 0 ‰ v P V 1 :“ xe1, . . . , emyR such that
B1pv, vq ď 0. Write v as a linear combination v “

řn
i“1 xiei P V 1 with xi P R for each 1 ď i ď n and

xi “ 0 for each m` 1 ď i ď n. Then for |v | :“
řn
i“1 |xi|ei, we have:

0 ď Bp|v |, |v |q “
n
ÿ

i,j“1
bij |xi| |xj | ď

m
ÿ

i,j“1
b1ij |xi| |xj |

ď

m
ÿ

i,j“1
b1ijxi xj “ B1pv, vq ď 0

Hence Bp|v |, |v |q “ 0 and this implies (Exercise!) that all the coefficients of |v | are non-zero. Therefore
m “ n and bij “ b1ij for all 1 ď i, j ď n, so that mij “ m1ij and Γ1W “ ΓW , hence a contradiction.

We also need the two following graphs:

Lemma 12.3

The graphs Z4 ‚ ‚ ‚ ‚
5 and Z5 ‚ ‚ ‚ ‚ ‚

5 are neither
positive definite nor positive semi-definite.

Proof : We find detpZ4q “
12´8

?
5

64 ă 0 and detpZ5q “
2´
?

5
16 ă 0.

Proof of Theorem A and Theorem B: necessary condition "ð" :
Let ΓW be an irreducible Coxeter graph which is either positive definite or positive semi-definite. Let
n P Zą0 be the number of vertices of ΓW . We have to prove that ΓW belongs either to List A or to List B.
We use the following property:

Property f : Any proper subgraph of ΓW is neither in List B, nor Z4, nor Z5.

Indeed, on the one hand, by Proposition 12.2 any proper subgraph of Γ1 of ΓW is positive definite, but on
the other hand, we have seen in the proof of the sufficient condition ("ð") of Theorem A and Theorem B
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and Lemma 12.3 that the graphs in List B\tZ4, Z5u are not positive definite.

We are now going to prove that the fact that ΓW has Property f implies that ΓW P List A\ List B. We
proceed in a constructive manner as follows:







Appendix: Background Material: Group Theory

The aim of this chapter is to introduce formally two constructions of the theory of groups: semi-direct
products and presentations of groups. Semi-direct products are useful when considering concrete
groups, for instance in examples. Presentations describe groups by generators and relations in a con-
cise way. They enable us to define Coxeter groups. Finally, in Section C, we present some well-known
results of the representation theory of finite groups, which will enable us to classify the finite Coxeter
groups.

References:
[Hum96] J. F. Humphreys, A course in group theory, Oxford Science Publications, The Clarendon

Press, Oxford University Press, New York, 1996.
[Joh90] D. L. Johnson, Presentations of groups, London Mathematical Society Student Texts, vol. 15,

Cambridge University Press, Cambridge, 1990.

A Semi-direct products
The semi-direct product is a construction of the theory of groups, which allows us to build new groups
from old ones. It is a natural generalisation of the direct product.

Definition A.1 (Semi-direct product)
A group G is said to be the (internal or inner) semi-direct product of a normal subgroup N Ĳ G
by a subgroup H ď G if the following conditions hold:

(a) G “ NH;

(b) N XH “ t1u.

Notation: G “ N ¸H .

Example 3

(1) A direct product G1 ˆ G2 of two groups is the semi-direct product of N :“ G1 ˆ t1u by
H :“ t1u ˆ G2.

(2) G “ S3 is the semi-direct product of N “ C3 “ xp1 2 3qy Ĳ S3 and H “ C2 “ xp1 2qy ď S3.
Hence S3 – C3 ¸ C2.

30



Notizen zum Proseminar: Endliche Coxeter-Gruppen WS 2019/20 31

Notice that, in particular, a semi-direct product of an abelian subgroup by an abelian subgroup
need not be abelian.

(3) More generally G “ Sn (n ě 3) is a semi-direct product ofN “ An Ĳ Sn by H “ C2 “ xp1 2qy.

Remark A.2

(a) If G is a semi-direct product of N by H , then the 2nd Isomorphism Theorem yields

G{N “ HN{N – H{H XN “ H{t1u – H

and this gives rise to a short exact sequence

1 ÝÑ N ÝÑ G ÝÑ H ÝÑ 1 .

Hence a semi-direct product of N by H is a special case of an extension of N by H .

(b) In a semi-direct product G “ N ¸ H of N by H , the subgroup H acts by conjugation on N ,
namely @h P H ,

θh : N ÝÑ N
n ÞÑ hnh´1

is an automorphism of N . In addition θhh1 “ θh ˝ θh1 for every h, h1 P H , so that we have a
group homomorphism

θ : H ÝÑ AutpNq
h ÞÑ θh .

Proposition A.3
With the above notation, N,H and θ are sufficient to reconstruct the group law on G.

Proof : Step 1. Each g P G can be written in a unique way as g “ nh where n P N , h P H:

indeed by (a) and (b) of the Definition, if g “ nh “ n1h1 with n, n1 P N , h, h1 P H , then

n´1n1 “ hph1q´1 P N XH “ t1u ,

hence n “ n1 and h “ h1.
Step 2. Group law: Let g1 “ n1h1, g2 “ n2h2 P G with n1, n2 P N , h1, h2 P H as above. Then

g1g2 “ n1h1n2h2 “ n1 h1n2ph´1
1

loooomoooon

θh1 pn2q

h1qh2 “ rn1θh1pn2qs ¨ rh1h2s .

With the construction of the group law in the latter proof in mind, we now consider the problem of
constructing an "external" (or outer) semi-direct product of groups.
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Proposition A.4
Let N and H be two arbitrary groups, and let θ : H ÝÑ AutpNq, h ÞÑ θh be a group homomorphism.
Set G :“ N ˆH as a set. Then the binary operation

¨ : G ˆ G ÝÑ G
`

pn1, h1q, pn2, h2q
˘

ÞÑ pn1, h1q ¨ pn2, h2q :“ pn1θh1pn2q, h1h2q

defines a group law on G. The neutral element is 1G “ p1N , 1Hq and the inverse of pn, hq P N ˆH
is pn, hq´1 “ pθh´1pn´1q, h´1q.
Furthermore G is an internal semi-direct product of N0 :“ N ˆ t1u – N by H0 :“ t1u ˆH – H .

Proof : Exercise.

Definition A.5
In the context of Proposition A.3 we say that G is the external (or outer) semi-direct product of N
by H w.r.t. θ, and we write G “ N ¸θ H .

Example 4
Here are a few examples of very intuitive semi-direct products of groups, which you have very prob-
ably already encountered in other lectures, without knowing that they were semi-direct products:

(1) If H acts trivially on N (i.e. θh “ IdN @h P H), then N ¸θ H “ N ˆH .

(2) Let K be a field. Then

GLnpK q “ SLnpK q ¸
 

diagpλ, 1, . . . , 1q P GLnpK q | λ P Kˆ
(

,

where diagpλ, 1, . . . , 1q is the diagonal matrix with (ordered) diagonal entries λ, 1, . . . , 1.

(3) Let K be a field and let

B :“
#˜

˚ ˚

. . .
0 ˚

¸

P GLnpK q
+

p“ upper triangular matricesq,

U :“
#˜

1 ˚

. . .
0 1

¸

P GLnpK q
+

p“ upper unitriangular matricesq,

T :“
#˜

λ1 0
. . .

0 λn

¸

P GLnpK q
+

p“ diagonal matricesq.

Clearly U is normal in B, since it is the kernel of the group homomorphism B ÝÑ T which
sends a matrix in B to its diagonal. Thus B is a semi-direct product of U by T .

(4) Let Cm “ xgy and Cn “ xhy (m,n P Zě1) be finite cyclic groups.
Assume moreover that k P Z is such that kn ” 1 pmod mq and set

θ : Cn ÝÑ AutpCmq
hi ÞÑ pθhqi ,

where θh : Cm ÝÑ Cm, g ÞÑ gk . Then

pθhqnpgq “ pθhqn´1pgkq “ pθhqn´2pgk2
q “ . . . “ gkn “ g
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since opgq “ m and kn ” 1 pmod mq. Thus pθhqn “ IdCm and θ is a group homomorphism.
It follows that under these hypotheses there exists a semi-direct product of Cm by Cn w.r.t.
to θ.

Particular case: m ě 1, n “ 2 and k “ ´1 yield the dihedral group D2m of order 2m with
generators g (of order m) and h (of order 2) and the relation θhpgq “ hgh´1 “ g´1.

B Presentations of groups
Idea: describe a group using a set of generators and a set of relations between these generators.

Examples: p1q Cm “ xgy “ xg | gm “ 1y 1 generator: g
1 relation: gm “ 1

p2q D2m “ Cm ¸θ C2 2 generators: g, h
3 relations: gm “ 1, h2 “ 1, hgh´1 “ g´1

p3q Z “ x1Zy 1 generator: 1Z

no relation (ù "free group")

To begin with we examine free groups and generators.

Definition B.1 (Free group / Universal property of free groups)
Let X be a set. A free group with basis X (or free group on X ) is a group F containing X as a
subset and satisfying the following universal property: For any group G and for any (set-theoretic)
map f : X ÝÑ G, there exists a unique group homomorphism f̃ : F ÝÑ G such that f̃ |X “ f , or in
other words such that the following diagram commutes:

X G

F

i:“inc

f

ö

D! f̃ s.t. f̃ |X“f̃˝i“f

Moreover, |X | is called the rank of F .

Proposition B.2
If F exists, then F is the unique free group with basis X up to a unique isomorphism.

Proof : Assume F 1 is another free group with basis X .
Let i : X ãÑ F be the canonical inclusion of X in F and let i1 : X ãÑ F 1 be the canonical inclusion of X
in F 1.
X F 1

F

i

i1

D! ĩ

D! ĩ1
By the universal property of Definition B.1, there exists:
- a unique group homomorphism ĩ1 : F ÝÑ F 1 s.t. i1 “ ĩ1 ˝ i; and
- a unique group homomorphism ĩ : F 1 ÝÑ F s.t. i “ ĩ ˝ i1.
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X F

F

i

i

ĩ˝ĩ1

IdF
Then p̃i˝ĩ1q|X “ i, but obviously we also have IdF |X “ i. Therefore, by uniqueness,
we have ĩ ˝ ĩ1 “ IdF .

A similar argument yields ĩ1 ˝ ĩ “ IdF 1 , hence F and F 1 are isomorphic, up to a unique isomorphism,
namely ĩ with inverse ĩ1.

Proposition B.3
If F is a free group with basis X , then X generates F .

Proof : Let H :“ xXy be the subgroup of F generated by X , and let jH :“ X ãÑ H denote the canonical
inclusion of X inH . By the universal property of Definition B.1, there exists a unique group homomorphism
rjH such that rjH ˝ i “ jH :

X H

F

i

jH

ö

D! rjH

Therefore, letting κ : H ãÑ F denote the canonical inclusion of H in F , we have the following commutative
diagram:

X H F

F

i

jH κ

rjH IdF

κ˝ rjH

Thus by uniqueness κ ˝ rjH “ IdF , implying that rjH : H ÝÑ F is injective. Thus

F “ ImpIdF q “ Impκ ˝ rjHq “ Imp rjHq Ď H

and it follows that F “ H . The claim follows.

Theorem B.4
For any set X , there exists a free group F with basis X .

Proof : Set X :“ txα | α P Iu where I is a set in bijection with X , set Y :“ tyα | α P Iu in bijection with X
but disjoint from X , i.e. X X Y “ H, and let Z :“ X Y Y .
Furthermore, set E :“

Ť8

n“0 Zn, where Z 0 :“ tp qu (i.e. a singleton), Z 1 :“ Z , Z 2 :“ Z ˆ Z , . . .
Then E becomes a monoid for the concatenation of sequences, that is

pz1, . . . , znq
looooomooooon

PZn

¨ pz11, . . . , z1mq
looooomooooon

PZm

:“ pz1, . . . , zn, z11, . . . , z1nq
loooooooooooomoooooooooooon

PZn`m

.

The law ¨ is clearly associative by definition, and the neutral element is the empty sequence p q P Z 0.
Define the following Elementary Operations on the elements of E :
Type (1): add in a sequence pz1, . . . , znq two consecutive elements xα , yα and obtain

pz1, . . . , zk , xα , yα , zk`1, . . . , znq
Type (1bis): add in a sequence pz1, . . . , znq two consecutive elements yα , xα and obtain

pz1, . . . , zm, yα , xα , zm`1, . . . , znq
Type (2): remove from a sequence pz1, . . . , znq two consecutive elements xα , yα and obtain

pz1, . . . , zr , x̌α , y̌α , zr`1, . . . , znq
Type (2bis): remove from a sequence pz1, . . . , znq two consecutive elements yα , xα and obtain

pz1, . . . , zs, y̌α , x̌α , zs`1, . . . , znq
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Now define an equivalence relation „ on E as follows:

two sequences in E are equivalent :ðñ the 2nd sequence can be obtain from the 1st
sequence through a succession of Elementary
Operations of type (1), (1bis), (2) and (2bis).

It is indeed easily checked that this relation is:
– reflexive: simply use an empty sequence of Elementary Operations;
– symmetric: since each Elementary Operation is invertible;
– transitive: since 2 consecutive sequences of Elementary Operations is again a sequence of Elementary
Operations.
Now set F :“ E{ „, and write rz1, . . . , zns for the equivalence class of pz1, . . . , znq in F “ E{ „.

Claim 1: The above monoid law on E induces a monoid law on F .
The induced law on F is: rz1, . . . , zns ¨ rz11, . . . , z1ms “ rz1, . . . , zn, z11, . . . , z1ms.
It is well-defined: if pz1, . . . , znq „ pt1, . . . , tkq and pz11, . . . , z1mq „ pt11, . . . , t1lq, then

pz1, . . . , znq ¨ pz11, . . . , z1mq “ pz1, . . . , zn, z11, . . . , z1mq
„ pt1, . . . , tk , z11, . . . , z1mq via Elementary Operations on the 1st part
„ pt1, . . . , tk , t11, . . . , t1lq via Elementary Operations on the 2nd part
“ pt1, . . . , tnq ¨ pt11, . . . , t1mq

The associativity is clear, and the neutral element is rp qs. The claim follows.

Claim 2: F endowed with the monoid law defined in Claim 1 is a group.
Inverses: the inverse of rz1, . . . , zns P F is the equivalence of the sequence class obtained from
pz1, . . . , znq by reversing the order and replacing each xα with yα and each yα with xα . (Obvious
by definition of „.)

Claim 3: F is a free group on X .
Let G be a group and f : X ÝÑ G be a map. Define

pf : E ÝÑ G
pz1, . . . , znq ÞÑ fpz1q ¨ ¨ ¨ ¨ ¨ fpznq ,

where f is defined on Y by fpyαq :“ fpx´1
α q for every yα P Y .

Thus, if pz1, . . . , znq „ pt1, . . . , tkq, then pfpz1, . . . , znq “ pfpt1, . . . , tkq by definition of f on Y . Hence
f induces a map

r

pf : F ÝÑ G
rz1, . . . , zns ÞÑ fpz1q ¨ ¨ ¨ ¨ ¨ fpznq ,

By construction pf is a monoid homomorphism, therfore so is rpf , but since F and G are groups, rpf is
in fact a group homomorphism. Hence we have a commutative diagram

X G

F

i

f

ö

r

pf

where i : X ÝÑ F, x ÞÑ rxs is the canonical inclusion.
Finally, notice that the definition of rpf is forced if we want rpf to be a group homorphism, hence we
have uniqueness of rpf , and the universal property of Definition B.1 is satisfied.
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Notation and Terminology

¨ To lighten notation, we identify rxα s P F with xα , hence ryα s with x´1
α , and rz1, . . . , zns with

z1 ¨ ¨ ¨ zn in F .

¨ A sequence pz1, . . . , znq P E with each letter zi (1 ď i ď n) equal to an element xαi P X or
x´1
αi is called a word in the generators txα | α P Iu. Each word defines an element of F via:
pz1, . . . , znq ÞÑ z1 ¨ ¨ ¨ zn P F . By abuse of language, we then often also call z1 ¨ ¨ ¨ zn P F a word.

¨ Two words are called equivalent :ðñ they define the same element of F .

¨ If pz1, . . . , znq P Zn Ď E (n P Zě0), then n is called the length of the word pz1, . . . , znq.

¨ A word is said to be reduced if it has minimal length amongst all the words which are equivalent
to this word.

Proposition B.5
Every group G is isomorphic to a factor group of a free group.

Proof : Let S :“ tgα P G | α P Iu be a set of generators for G (in the worst case, take I “ G). Let
X :“ txα | α P Iu be a set in bijection with S, and let F be the free group on X . Let i : X ãÑ F denote
the canonical inclusion.

X G

F

F{ kerpf̃q

i

f

D! f̃

can. proj.

ö

D!pf̃

By the universal property of free groups the map f : X ãÑ G, xα ÞÑ gα
induces a unique group homomorphism f̃ : F ÝÑ G such that f̃ ˝ i “ f .
Clearly f̃ is surjective since the generators of G are all Impf̃q. Therefore
the 1st Isomorphism Theorem yields G – F{ kerpf̃q.

We can now consider relations between the generators of groups:

Notation and Terminology
Let S :“ tgα P G | α P Iu be a set of generators for the group G, let X :“ txα | α P Iu be in
bijection with S, and let F be the free group on X .

By the previous proof, G – F{N , where N :“ kerpf̃q (gα Ø xα “ xαN via the homomorphism pf̃ ).
Any word pz1, . . . , znq in the xα ’s which defines an element of F in N is mapped in G to an expression
of the form

z1 ¨ ¨ ¨ zn “ 1G , where zi :“ image of zi in G under the canonical homomorphism.

In this case, the word pz1, . . . , znq is called a relation in the group G for the set of generators S.
Now let R :“ trβ | β P Ju be a set of generators of N as normal subgroup of F (this means that N
is generated by the set of all conjugates of R ). Such a set R is called a set of defining relations
of G.
Then the ordered pair pX,Rq is called a presentation of G, and we write

G “ xX | Ry “ xtxαuαPI | trβuβPJy .
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The group G is said to be finitely presented if it admits a presentation G “ xX | Ry, where both
|X |, |R | ă 8. In this case, by abuse of notation, we also often write presentations under the form

G “ xx1, . . . , x|X | | r1 “ 1, . . . , r|R | “ 1y .

Example 5
The cyclic group Cn “ t1, g, . . . , gn´1u of order n P Zě1 generated by S :“ tgu. In this case, we
have:

X “ txu
R “ txnu
F “ xxy – pC8, ¨q
C8

f̃
ÝÑ Cn, x ÞÑ g has a kernel generated by xn as a normal subgroup. Then Cn “ xtxu | txnuy.

By abuse of notation, we write simply Cn “ xx | xny or also Cn “ xx | xn “ 1y.

Proposition B.6 (Universal property of presentations)
Let G be a group generated by S “ tsα | α P Iu, isomorphic to a quotient of a free group F on
X “ txα | α P Iu in bijection with S. Let R :“ trβ | β P Ju be a set of relations in G.

Then G admits the presentation G “ xX | Ry if and only if G satisfies the following universal
property:
X H

G

j

f

ö

f

For every group H , and for every set-theoretic map f : X ÝÑ H such that
f̃prβq “ 1H @ rβ P R , there exists a unique group homomorphism f : G ÝÑ H
such that f ˝ j “ f , where j : X ÝÑ G, xα ÞÑ sα , and f̃ is the unique extension
of f to the free group F on X .

Proof : "ñ": Suppose that G “ xX | Ry. Therefore G – F{N , where N is generated by R as normal
subgroup. Thus the condition f̃prβq “ 1H @ rβ P R implies that N Ď kerpf̃q, since

f̃pzrβz´1q “ f̃pzq f̃prβq
loomoon

“1H

f̃pzq´1 “ 1H @ rβ P R, @ z P F.

Therefore, by the universal property of the quotient, f̃ induces a unique group homomorphism
f : G – F{N ÝÑ H such that f ˝ π “ f̃ , where π : F ÝÑ F{N is the canonical epimorphism.
Now, if i : X ÝÑ F denotes the canonical inclusion, then j “ π ˝ i, and as a consequence we have
f ˝ j “ f .

"ð": Conversely, assume that G satisfies the universal property of the statement (i.e. relatively to
X, F, R ). Set N :“ R for the normal closure of R . Then we have two group homomorphisms:

φ : F{N ÝÑ G
xα ÞÑ sα

induced by f̃ : F ÝÑ G, and

ψ : G ÝÑ F{N
sα ÞÑ xα

given by the universal property. Then clearly φ ˝ ψpsαq “ φpxαq “ sα for each α P I , so that
φ ˝ ψ “ IdG and similarly ψ ˝ φ “ IdF{R . The claim follows.
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Example 6
Consider the finite dihedral group D2m of order 2m with 2 ď m ă 8. We can assume that D2m is
generated by

r :“ rotation of angle 2π
m and s :“ symmetry through the origin in R2 .

Then xry – Cm Ď G, xsy – C2 and we have seen that D2m “ xry ¸ xsy with three obvious relations
rm “ 1, s2 “ 1, and srs´1 “ r´1.
Claim: D2m admits the presentation xr, s | rm “ 1, s2 “ 1, srs´1 “ r´1y .
In order to prove the Claim, we let F be the free group on X :“ tx, yu, R :“ txm, y2, yxy´1xu,
N Ĳ F be the normal subgroup generated by R , and G :“ F{N so that

G “ xx, y | xm “ 1, y2 “ 1, y x y´1x “ 1y .

By the universal property of presentations the map

f : tx, yu ÝÑ D2m
x ÞÑ r
y ÞÑ s

induces a group homomorphism

f : G ÝÑ D2m
x ÞÑ r
y ÞÑ s ,

which is clearly surjective since D2m “ xr, sy. In order to prove that f is injective, we prove that G
is a group of order at most 2m. Recall that each element of G is an expression in x, y, x´1, y´1,
hence actually an expression in x, y, since x´1 “ xm´1 and y´1 “ y. Moreover, yxy´1 “ x´1

implies yx “ x´1y, hence we are left with expressions of the form

xayb with 0 ď a ď m´ 1 and 0 ď b ď 1 .

Thus we have |G| ď 2m, and it follows that f is an isomorphism.

Notice that if we remove the relation rm “ 1, we can also formally define an infinite dihedral group
D8 via the following presentation

D8 :“ xr, s | s2 “ 1, srs´1 “ r´1y .

Theorem B.7
Let G be a group generated by two distinct elements, s and t, both of order 2. Then G – D2m,
where 2 ď m ď 8. Moreover, m is the order of st in G, and

G “ xs, t | s2 “ 1, t2 “ 1, pstqm “ 1y .

(m “ 8 simply means "no relation".)

Proof : Set r :“ st and let m be the order of r.
Firstly, note that m ě 2, since m “ 1 ñ st “ 1 ñ s “ t´1 “ t as t2 “ 1. Secondly, we have the
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relation srs´1 “ r´1, since

srs´1 “ sps
loomoon

“1G

tqs´1 “ ts´1 “ t´1s´1 “ pstq´1 “ r´1 .

Clearly G can be generated by r and s as r “ st and so t “ sr.
Now, H :“ xry – Cm and H Ĳ G since

srs´1 “ r´1 P H and rrr´1 “ r P H (or because |G : H| “ 2) .

Set C :“ xsy – C2.
Claim: s R H .
Indeed, assuming s P H yields s “ ri “ pstqi for some 0 ď i ď m´ 1. Hence

1 “ s2 “ spstqi “ ptsqi´1t “ pts ¨ ¨ ¨ tq
looomooon

length i´1

s pts ¨ ¨ ¨ tq
looomooon

length i´1

,

so that conjugating by t, then s, then . . ., then t, we get 1 “ s, contradicting the assumption that opsq “ 2.
The claim follows.
Therefore, we have proved that G “ HC and H X C “ t1u, so that G “ H ¸ C “ D2m as seen in the
previous section.
Finally, to prove that G admits the presentation xs, t | s2 “ 1, t2 “ 1, pstqm “ 1y, we apply the universal
property of presentations twice to the maps

f : txs, xru ÝÑ xs, t | s2 “ 1, t2 “ 1, pstqm “ 1y
xs ÞÑ s
xr ÞÑ st

and
g : tys, ytu ÝÑ G “ xr, s | rm “ 1, s2 “ 1, srs´1 “ 1y

ys ÞÑ s
yt ÞÑ sr .

This yields the existence of two group homomorphisms

f : G “ xr, s | rm “ 1, s2 “ 1, srs´1 “ 1y ÝÑ xs, t | s2 “ 1, t2 “ 1, pstqm “ 1y

and
g : xs, t | s2 “ 1, t2 “ 1, pstqm “ 1y ÝÑ G “ xr, s | rm “ 1, s2 “ 1, srs´1 “ 1y

such that gf “ Id and fg “ Id. (Here you should check the details for yourself!)

C Representation theory and R-bilinear forms
We assume throughout this section that W is an arbitrary group, σ : W ÝÑ GLpV q an arbitrary
representation of W over a finite-dimensional R-vector space V (i.e. a group homomorphism from W
to GLpV q) and we consider its dual representation σ˚ defined by

σ˚ : W ÝÑ GLpV ˚q
w ÞÑ σ˚pwq :“ tpσpw´1qq .

Given w P W and v P V we set w.v :“ σpwqpvq and given w P W and f P V ˚, we set w.f :“ σ˚pwqpfq.

We present here some standard results of representation theory, which we partially accept without
proof. We need the following terminology:
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Definition C.1

(a) A subspace U Ď V is called W -invariant if w.U Ď U ( ô w.U “ U) for every w P W .

(b) An endomorphism of σ is an R-linear map φ : V ÝÑ V such that φpw.vq “ w.φpvq (i.e.
φpσpwqpvqq “ σpwqpφpvqq) for every w P W and v P V .

(c) The representation σ is called irreducible if V has exactly two distinctW -invariant subspaces,
namely t0u and V itself.

(d) The representation σ is called absolutely irreducible if σ is irreducible and any endomor-
phism φ of σ has the form φ “ λ ¨ IdV for some λ P R.

(e) An R-bilinear form B : V ˆ V ÝÑ R is called W -invariant if

Bpw.v, w.v 1q “ Bpv, v 1q @w P W, @ v, v 1 P V .

Maschke’s Theorem (over R)
Assume W is a finite group and let σ : W ÝÑ GLpV q be is a representation of W . If U Ď V is a
W -invariant subspace, then there exists a W -invariant subspace U 1 Ď V such that W “ U ‘ U 1.

Proof : Omitted.

Proposition C.2
Let σ : W ÝÑ GLpV q be an absolutely irreducible representation of W and let B : V ˆ V ÝÑ R
be a non-zero W -invariant R-bilinear form. Then:

(a) B is non-degenerate;

(b) any W -invariant R-bilinear form B1 : V ˆ V ÝÑ R is a scalar multiple of B.

Proof : Set pB : V ÝÑ V ˚, u ÞÑ Bp´, uq.
Claim 1: B is W -invariant ðñ pB is a so-called homomorphism of representations between σ and σ˚,
in other words such that pBpw.vq “ w.pBpvq @w P W, @ v P V .

Proof of Claim 1: Exercise!

(a) It follows from Claim 1 that ker pB is W -invariant, because for every w P W we have:

u P ker pB ñ pBpw.uq “ w. pBpuq
loomoon

“0

“ 0 ñ w.u P ker pB.

Now, as B is non-zero, ker pB ‰ V , hence the only possibility remaining is ker pB “ t0u because we
assume that σ is irreducible. It follows that pB is injective, and hence bijective, because dimR V ă 8
implies that dimR V “ dimR V ˚. Therefore, B is non-degenerate.

(b) Let B1 : V ˆ V ÝÑ R be a second W -invariant R-bilinear form. Since B is non-degenerate by (a),
pB : V ÝÑ V ˚ is an isomorphism. Therefore, there exists an R-linear map φ : V ÝÑ V such that

B1pv 1, vq “ Bpv 1, φpvqq @ v 1, v P V .
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Concretely, one may take φ “ pB´1 ˝ pB1, since B1p´, vq “ pB1pvq “ pB ˝ φpvq “ Bp´, φpvqq.
Now, since B and B1 are W -invariant, by Claim 1, both pB and pB1 are homomorphisms between σ
and σ˚, therefore so is φ “ pB´1 ˝ pB1.
Furthermore, σ being absolutely irreducible, there exists λ P R such that φ “ λ ¨ IdV . Hence

B1pv 1, vq “ Bpv 1, φpvqq “ Bpv 1, λ ¨ vq “ λ ¨ Bpv 1, vq

for every v 1, v P V and it follows that B1 “ λ ¨ B.



Index of Notation

General symbols
C field of complex numbers
IdM identity map on the set M
Impfq image of the map f
kerpφq kernel of the morphism φ
N the natural numbers without 0
N0 the natural numbers with 0
P the prime numbers in Z
Q field of rational numbers
R field of real numbers
Z ring of integer numbers
Zěa,Ząa,Zďa,Zăa tm P Z | m ě a (resp. m ą a,m ě a,m ă aqu
|X | cardinality of the set X
δij Kronecker’s delta
Ť

union
š

disjoint union
Ş

intersection
ř

summation symbol
ś

, ˆ cartesian/direct product
¸ semi-direct product
‘ direct sum
H empty set
@ for all
D there exists
– isomorphism
f |S restriction of the map f to the subset S
ãÑ injective map
� surjective map
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Algebra
AutpGq automorphism group of the group G
An alternating group on n letters
Cm cyclic group of order m in multiplicative notation
CGpxq centraliser of the element x in G
CGpHq centraliser of the subgroup H in G
D2n dihedral group of order 2n
det determinant
EndpAq endomorphism ring of the abelian group A
G{N quotient group G modulo N
GLnpK q general linear group over K
H ď G, H ă G H is a subgroup of G, resp. a proper subgroup
N Ĳ G N is a normal subgroup G
NGpHq normaliser of H in G
N ¸θ H semi-direct product of N in H w.r.t. θ
PGLnpK q projective linear group over K
Sn symmetric group on n letters
SLnpK q special linear group over K
V ˚ R-dual of the R-vector space V
Z{mZ cyclic group of order m in additive notation
tφ transpose of the linear map/matrix φ
xg conjugate of the group element g by x , i.e. gxg´1

xgy Ď G subgroup of G generated by g
G “ xX | Ry presentation for the group G
|G : H| index of the subgroup H in G
x P G{N class of x P G in the quotient group G{N
t1u, 1 trivial group
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