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Foreword

Together with the necessary theoretical foundations, the main aims of this lecture are to:
‚ provide students with a modern approach to finite group theory;
‚ learn about the representation and character theory of finite groups and the representation

theory of semisimple algebras;
‚ learn about the applications of the latter theory to finite group theory, such as for example theproof of Burnside’s paqb-Theorem.The exercises mentioned in the text are important for the development of the lecture and the generalunderstanding of the topics. Further exercises can be found in the weekly exercise sheets.

Books and lecture notes which were used to prepare these lecture notes are the following.
Textbooks:

[Alp86] J. L. Alperin. Local representation theory. Vol. 11. Cambridge Studies in Advanced Mathe-matics. Cambridge University Press, Cambridge, 1986.[Ben98] D. J. Benson. Representations and cohomology. I. Vol. 30. Cambridge Studies in AdvancedMathematics. Cambridge University Press, Cambridge, 1998.[CR90] C. W. Curtis and I. Reiner. Methods of representation theory. Vol. I. John Wiley & Sons, Inc.,New York, 1990.[Dor71] L. Dornhoff. Group representation theory. Part A: Ordinary representation theory. MarcelDekker, Inc., New York, 1971.[Dor72] L. Dornhoff. Group representation theory. Part B: Modular representation theory. MarcelDekker, Inc., New York, 1972.[Hup98] B. Huppert. Character theory of finite groups. Vol. 25. Walter de Gruyter & Co., Berlin, 1998.[Isa94] I. M. Isaacs. Character theory of finite groups. Dover Publications, Inc., New York, 1994.[JL01] G. James and M. Liebeck. Representations and characters of groups. Second. CambridgeUniversity Press, New York, 2001.[LP10] K. Lux and H. Pahlings. Representations of groups. Vol. 124. Cambridge University Press,Cambridge, 2010.



Skript zur Vorlesung: Darstellungstheorie WS 24/25, Leibniz Universität Hannover iv
[NT89] H. Nagao and Y. Tsushima. Representations of finite groups. Academic Press, Inc., Boston,MA, 1989.[Rot10] J. J. Rotman. Advanced modern algebra. 2nd ed. Providence, RI: American MathematicalSociety (AMS), 2010.[Ser77] J.-P. Serre. Linear representations of finite groups. Springer-Verlag, New York-Heidelberg,1977.[Ser78] J.-P. Serre. Représentations linéaires des groupes finis. revised. Hermann, Paris, 1978.[Web16] P. Webb. A course in finite group representation theory. Vol. 161. Cambridge University Press,Cambridge, 2016.
Lecture Notes:

[Gec14] M. Geck. Algebra: Gruppen, Ringe, Körper (mit einer Einführung in die Darstellungstheorie
endlicher Gruppen). Edition Delkhofen, 2014.[Kül13] B. Külshammer. Darstellungstheorie. 2013. url: http : / / www . minet . uni - jena . de /
algebra/skripten/dt/dt-2010/dt.pdf.[Mal16] G. Malle. Characters of finite groups. Lecture Notes SS 2016, TU Kaiserslautern. 2016.[Thé05] J. Thévenaz. Représentations linéaires des groupes finis. Lecture Notes WS 2004/05, EPFL.2005.
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Conventions

Unless otherwise stated, throughout these notes we make the following general assumptions:
¨ all groups considered are finite;
¨ all vector spaces considered are finite-dimensional;
¨ all rings considered are associative and unital (i.e. possess a neutral element for themultiplication, denoted 1);
¨ all modules considered are left modules.
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Ordinary Representation Theory
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Chapter 1. Linear Representations of Finite Groups

Representation theory of finite groups is originally concerned with the ways of writing a finite group Gas a group of matrices, that is using group homomorphisms from G to the general linear group GLnpK qof invertible nˆ n-matrices with coefficients in a field K for some non-negative integer n.
Notation: throughout this chapter, unless otherwise specified, we let:

¨ G denote a finite group (in multiplicative notation);
¨ K denote a field of arbitrary characteristic; and
¨ V denote a K -vector space such that dimK pV q ă 8 and GLpV q :“ AutK pV q its group of K -automorphisms.

In general, unless otherwise stated, all groups considered are assumed to be finite and all K -vectorspaces considered are assumed to be finite-dimensional.
1 Linear Representations
Definition 1.1 (K -representation, matrix representation, faithfullness)Let n P Zě0 be a non-negative integer.

(a) A K -representation of G (or a (linear) representation of G (over K )) of degree n is a grouphomomorphism
ρ : G ÝÑ GLpV qwhere V is a K -vector space of dimension n.

(b) A matrix representation of G over K of degree n is a group homomorphism R : G ÝÑ GLnpK q.
An injective (matrix) representation of G over K is called faithful.

Remark 1.2We see at once that both concepts of a representation and of a matrix representation are closelyconnected.Recall that every choice of an ordered basis B of V yields a group isomorphism
9
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αB : GLpV q ÝÑ GLnpK q

φ ÞÑ pφqBwhere pφqB denotes the matrix of φ in the basis B. Therefore, a K -representation ρ : G ÝÑ GLpV qtogether with the choice of an ordered basis B of V gives rise to a matrix representation of G:
G GLpV q

GLnpK q .

ρ

ö

RB :“αB˝ρ
αB–

Explicitly, RB sends an element g P G to the matrix `

ρpgq
˘

B of ρpgq expressed in the basis B.Another choice of a K -basis of V yields another matrix representation!!It is also clear from the diagram that, conversely, any matrix representation R : G ÝÑ GLnpK qgives rise to a K -representation ρB :“ α´1
B ˝ R of G.

Throughout the lecture, we will favour the approach using representations rather than matrix represen-tations in order to develop theoretical results. However, matrix representations are essential to carryout computations. Being able to pass back and forth from one approach to the other will be an essentialfeature.Also note that Remark 1.2 allows us to transfer terminology/results from representations to matrixrepresentations and conversely. Hence, from now on, in general we make new definitions for represen-tations and use them for matrix representations as well.
Example 1(a) If G is an arbitrary finite group and V :“ K , then

ρ : G ÝÑ GLpK q – Kˆ

g ÞÑ ρpgq :“ IdK Ø 1K
is a K -representation of G, called the trivial representation of G.Similarly ρ : G ÝÑ GLpV q, g ÞÑ IdV with dimK pV q “: n ą 1 is also a K -representation of Gand is called a trivial representation of G of degree n.

(b) If G is a subgroup of GLpV q, then the canonical inclusion
G ãÑ GLpV q

g ÞÑ g

is a faithful representation of G, called the tautological representation of G.
(c) Let G :“ Sn (n ě 1) be the symmetric group on n letters. Let te1, . . . , enu be the standardbasis of V :“ K n. Then

ρ : Sn ÝÑ GLpK nq

σ ÞÑ ρpσq : K n ÝÑ K n, ei ÞÑ eσpiq

is a K -representation, called the natural representation of Sn.
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(d) More generally, if X is a finite G-set, i.e. a finite set endowed with a left action ¨ : GˆX ÝÑ X ,and V is a K -vector space with basis tex | x P Xu, then

ρX : G ÝÑ GLpV q

g ÞÑ ρX pgq : V ÝÑ V , ex ÞÑ eg¨x

is a K -representation of G, called the permutation representation associated with X .Notice that (c) is a special case of (d) with G “ Sn and X “ t1, 2, . . . , nu.If X “ G and the left action ¨ : G ˆ X ÝÑ X is just the multiplication in G, then
ρX “: ρreg

is called the regular representation of G.
We shall see later on in the lecture that K -representations are a special case of a certain algebraic
structure (in the sense of the lecture Algebraische Strukturen). Thus, next, we define the notions thatshall correspond to a homomorphism and an isomorphism of this algebraic structure.
Definition 1.3 (Homomorphism of representations, equivalent representations)Let ρ1 : G ÝÑ GLpV1q and ρ2 : G ÝÑ GLpV2q be two K -representations of G, where V1, V2 aretwo finite-dimensional K -vector spaces.

(a) A K -homomorphism α : V1 ÝÑ V2 such that ρ2pgq ˝ α “ α ˝ ρ1pgq for each g P G is called a
homomorphism of representations (or a G-homomorphism) between ρ1 and ρ2.

V1 V1
V2 V2

ρ1pgq

α ö α

ρ2pgq

(b) If, moreover, α is a K -isomorphism, then it is called an isomorphism of representations (or a
G-isomorphism), and the K -representations ρ1 and ρ2 are called equivalent (or isomorphic).In this case we write ρ1 „ ρ2.

(c) Two matrix representations R1, R2 : G ÝÑ GLnpK q are called equivalent iff D T P GLnpK qsuch that
R2pgq “ TR1pgqT´1 @g P G .In this case we write R1 „ R2.

Remark 1.4(a) Equivalent representations have the same degree.(b) Clearly „ is an equivalence relation.(c) Consequence: it essentially suffices to study representations up to equivalence (as it essen-tially suffices to study groups up to isomorphism).
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Remark 1.5If ρ : G ÝÑ GLpV q is a K -representation of G and E :“ pe1, . . . , enq, F :“ pf1, . . . , fnq are twoordered bases of V , then by Remark 1.2, we have two matrix representations:

RE : G ÝÑ GLnpK q

g ÞÑ
`

ρpgq
˘

E
and RF : G ÝÑ GLnpK q

g ÞÑ
`

ρpgq
˘

FThese matrix representations are equivalent since RF pgq “ TREpgqT´1 @g P G, where T is thechange-of-basis matrix.
2 Subrepresentations and (Ir)reducibility
Subrepresentations allow us to introduce one of the main notions that will enable us to break repre-sentations in elementary pieces in order to simplify their study: the notion of (ir)reducibility.
Definition 2.1 (G-invariant subspace, irreducibility)Let ρ : G ÝÑ GLpV q be a K -representation of G.

(a) A K -subspace W Ď V is called G-invariant if
ρpgq

`

W
˘

Ď W @g P G .

(In fact, in this case the reverse inclusion holds as well, since for each w P W we can write
w “ ρpgg´1qpwq “ ρpgq

`

ρpg´1qpwq
˘

P ρpgq
`

W
˘, hence ρpgq

`

W
˘

“ W .)
(b) The representation ρ is called reducible if V admits a non-trivial proper G-invariant K -subspace t0u Ĺ W Ĺ V , whereas ρ is called irreducible if it admits exactly two G-invariantsubspaces: t0u and V itself.

Notice that V itself and the zero subspace t0u are always G-invariant K -subspaces. Moreover, ρ isirreducible if it is not reducible and V ‰ t0u.
Definition 2.2 (Subrepresentation)If ρ : G ÝÑ GLpV q is a K -representation and W Ď V is a G-invariant K -subspace, then

ρW : G ÝÑ GLpW q

g ÞÑ ρW pgq :“ ρpgq|Wis called a K -subrepresentation of ρ. (This is clearly again a representation of G.)
Remark 2.3Let ρ : G ÝÑ GLpV q be a K -representation and 0 ‰ W Ď V be a G-invariant K -subspace of V .Now choose an ordered basis B1 of W and complete it to an ordered basis B of V . Then for each
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g P G the corresponding matrix representation evaluated at g is of the form

`

ρpgq
˘

B “

»

—

—

—

—

–

B1 BzB1

´

ρW pgq

¯

B1 ˚

0 ˚

fi

ffi

ffi

ffi

ffi

fl

.

Example 2

(a) Any K -representation of degree 1 is irreducible, for dimension reasons!
(b) Let ρ : Sn ÝÑ GLpK nq be the natural representation of Sn (n ě 1) and let B :“ pe1, . . . , enqbe the standard basis of V “ K n. Then for each g P G we have

ρpgq

´

n
ÿ

i“1 ei
¯

“

n
ÿ

i“1ρpgqpeiq “

n
ÿ

i“1 ei ,where the last equality holds because ρpgq : te1, . . . , enu ÝÑ te1, . . . , enu, ei ÞÑ egpiq is abijection. Thus
W :“ x

n
ÿ

i“1 ei yK

is an Sn-invariant K -subspace of K n of dimension 1. It follows that ρ is reducible if n ą 1.
(c) More generally, the trivial representation of a finite group G is a subrepresentation of anypermutation representation of G. [Exercise on Sheet 1]
(d) The symmetric group S3 “ xp1 2q, p1 2 3qy admits the following three pairwise non-equivalentirreducible matrix representations over C:

ρ1 : S3 ÝÑ Cˆ, σ ÞÑ 1
i.e. the trivial representation,

ρ2 : S3 ÝÑ Cˆ, σ ÞÑ signpσq

where signpσq denotes the sign of the permutation σ , and
ρ3 : S3 ÝÑ GL2pCq

p1 2q ÞÑ
` 0 11 0 ˘

p1 2 3q ÞÑ
` 0 ´11 ´1 ˘.

See [Exercise on Sheet 1].We will prove later in the lecture that these are all the irreducible C-representations of S3up to equivalence.
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Properties 2.4Let ρ1 : G ÝÑ GLpV1q and ρ2 : G ÝÑ GLpV2q be two K -representations of G and let α : V1 ÝÑ V2be a G-homomorphism.

(a) If W Ď V1 is a G-invariant K -subspace of V1, then αpW q Ď V2 is G-invariant.
(b) If W Ď V2 is a G-invariant K -subspace of V2, then α´1pW q Ď V1 is G-invariant.
(c) In particular, kerpαq and Impαq are G-invariant K -subspaces of V1 and V2 respectively.

Proof : [Exercise on Sheet 1] .
3 Maschke’s Theorem
We now come to our first major result in the representation theory of finite groups, namely Maschke’sTheorem, which provides us with a criterion for representations to decompose into direct sums of irre-ducible subrepresentations.
Definition 3.1 (Direct sum of subrepresentations)Let ρ : G ÝÑ GLpV q be a K -representation. If W1,W2 Ď V are two G-invariant K -subspaces suchthat V “ W1 ‘ W2, then we say that ρ is the direct sum of the subrepresentations ρW1 and ρW2and we write ρ “ ρW1 ‘ ρW2 .
Remark 3.2With the notation of Definition 3.1, if we choose an ordered basis Bi of Wi (i “ 1, 2) and considerthe ordered K -basis B :“ B1 \B2 of V , then the corresponding matrix representation is of the form

`

ρpgq
˘

B “

»

—

—

—

—

—

—

–

B1 B2

´

ρW1pgq

¯

B1 0
0 ´

ρW2pgq

¯

B2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

@g P G .

The following exercise shows that it is not always possible to decompose representations into directsums of irreducible subrepresentations.
Exercise 3.3Let p be an odd prime number, let G :“ Cp “ xg | gp “ 1y, let K :“ Fp, and let V :“ F2

p with itscanonical basis B “ pe1, e2q. Consider the matrix representation
R : G ÝÑ GL2pK q

gb ÞÑ
` 1 b0 1 ˘ .(a) Prove that Ke1 is G-invariant and deduce that R is reducible.
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(b) Prove that there is no direct sum decomposition of V into irreducible G-invariant subspaces.

Theorem 3.4 (Maschke)Let G be a finite group and let ρ : G ÝÑ GLpV q be a K -representation of G. If charpK q ∤ |G|, thenevery G-invariant K -subspace W of V admits a G-invariant complement in V , i.e. a G-invariant
K -subspace U Ď V such that V “ W ‘ U .

Proof : To begin with, choose an arbitrary complement U0 to W in V , i.e. V “ W ‘ U0 as K -vector spaces.(Note that, however, U0 is possibly not G-invariant!) Next, consider the projection onto W along U0,that is the K -linear map
π : V “ W ‘ U0 ÝÑ Wwhich maps an element v “ w ` u with w P W,u P U0 to w , and define a new K -linear map

rπ : V ÝÑ V
v ÞÑ 1

|G|

ř

gPG ρpgqπρpg´1qpvq .
Notice that it is allowed to divide by |G| because the hypothesis that charpK q ∤ |G| implies that |G| ¨ 1Kis invertible in the field K .We prove the following assertions:(1) Im rπ Ď W : indeed, if v P V , then

rπpvq “
1

|G|

ÿ

gPG
ρpgqπρpg´1qpvq

looooomooooon

PW
looooooooomooooooooon

PW (G-invariance)
P W .

(2) rπ |W “ IdW : indeed, if w P W , then
rπpwq “

1
|G|

ÿ

gPG
ρpgqπ ρpg´1qpwq

looooomooooon

PW(by G-invariance)
looooooomooooooon

“ρpg´1qpwq(by def. of π)

“
1

|G|

ÿ

gPG
ρpgqρpg´1q
looooomooooon

“ρpgg´1q

“ρp1Gq
“IdV

pwq “
1

|G|

ÿ

gPG
w “ w .

Thus (1)+(2) imply that rπ is a projection onto W so that as a K -vector space
V “ W ‘ kerprπq .(3) kerprπq is G-invariant: indeed, for each h P G we have

ρphq ˝ rπ “
1

|G|

ÿ

gPG
ρphqρpgq
loooomoooon

“ρphgq

πρpg´1q

“
1

|G|

ÿ

gPG
ρphgqπρpphgq´1hq

s:“hg
“

1
|G|

ÿ

sPG
ρpsqπρps´1hq

“

´ 1
|G|

ÿ

sPG
ρpsqπρps´1q

¯

ρphq “ rπ ˝ ρphq .

Hence rπ is a G-homomorphism and it follows from Property 2.4(c) that its kernel is G-invariant.Therefore we may set U :“ kerprπq and the claim follows.
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Definition 3.5 (Completely reducible/semisimple representation / constituent)A K -representation which can be decomposed into a direct sum of irreducible subrepresentations iscalled completely reducible or semisimple. In this case, an irreducible subrepresentation occuringin such a decomposition is called a constituent of the representation.
Corollary 3.6If G is a finite group and K is a field such that charpK q ∤ |G|, then every K -representation of G iscompletely reducible.
Proof : Let ρ : G ÝÑ GLpV q be a K -representation of G. W.l.o.g. we may assume V ‰ t0u.

¨ Case 1: ρ is irreducible ñ nothing to do ✓.
¨ Case 2: ρ is reducible. Thus dimK pV q ě 2 and there exists an irreducible G-invariant K -subspace0 ‰ V1 ň V . Now, by Maschke’s Theorem, there exists a G-invariant complement U Ď V , i.e.such that V “ V1 ‘ U . As dimK pV1q ě 1, we have dimK pUq ă dimK pV q. Therefore, an inductionargument yields the existence of a decomposition

V “ V1 ‘ V2 ‘ ¨ ¨ ¨ ‘ Vr pr ě 2q

of V , where V1, . . . , Vr are irreducible G-invariant subspaces.
Remark 3.7

(a) The hypothesis of Maschke’s Theorem requiring that charpK q ∤ |G| is always verified if K isa field of characteristic zero. E.g. if K “ C,R,Q, . . .

(b) The converse of Maschke’s Theorem holds as well. It will be proved later on with moreappropriate tools.
(c) In the literature, a representation is called an ordinary representation if K is a field ofcharacteristic zero (or more generally of characteristic not dividing |G|), and it is called a

modular representation if charpK q | |G|.
In Part I of these lecture notes we are going to restrict our attention to ordinary representation
theory and, most of the time, even assume that K is the field C of complex numbers.

Exercise 3.8 (Alternative proof of Maschke’s Theorem over the field C)Assume K “ C and let ρ : G ÝÑ GLpV q be a C-representation of G.
(a) Prove that there exists a G-invariant scalar product x , y : V ˆ V ÝÑ C, i.e. such that

xg.u, g.vy “ xu, vy @g P G,@u, v P V .

[Hint: consider an arbitrary scalar product on V , say p , q : V ˆ V ÝÑ C, which is not necessarily G-invariant.Use a sum on the elements of G, weighted by the group order |G|, in order to produce a new G-invariant scalarproduct on V .]
(b) Deduce that every G-invariant subspace W of V admits a G-invariant complement.[Hint: consider the orthogonal complement of W .]



Chapter 2. The Group Algebra and Its Modules

We now introduce the concept of a KG-module, and show that this more modern approach is equivalentto the concept of a K -representation of a given finite group G. Some of the material in the remainder ofthese notes will be presented in terms of KG-modules. As we will soon see with our second fundamentalresult, namely Schur’s Lemma, there are several advantages to this approach to representation theory.
Notation: throughout this chapter, unless otherwise specified, we let:

¨ G denote a finite group;
¨ K denote a field of arbitrary characteristic; and
¨ V denote a K -vector space such that dimK pV q ă 8.

In general, unless otherwise stated, all groups considered are assumed to be finite and all K -vectorspaces / modules over the group algebra considered are assumed to be finite-dimensional.
4 Modules over the Group Algebra
Lemma-Definition 4.1 (Group algebra)The group ring KG is the ring whose elements are the K -linear combinations řgPG λgg with λg P K ,and addition and multiplication are given by

ÿ

gPG
λgg`

ÿ

gPG
µgg “

ÿ

gPG
pλg ` µgqg and `

ÿ

gPG
λgg

˘

¨
`

ÿ

hPG
µhh

˘

“
ÿ

g,hPG
pλgµhqgh

respectively. In fact KG is a K -vector space with basis G, hence a K -algebra. Thus we usuallycall KG the group algebra of G over K rather than simply group ring.
Note: In Definition 4.1, the field K can be replaced with a commutative ring R . E.g. if R “ Z, then
ZG is called the integral group ring of G.
Proof : By definition KG is a K -vector space with basis G, and the multiplication in G is extended by

K -bilinearity to the given multiplication ¨ : KG ˆ KG ÝÑ KG. It is then straightforward to check that
KG bears both the structures of a ring and of a K -vector space. Finally, axiom (A3) of K -algebras (seeAppendix B) follows directly from the definition of the multiplication and the commutativity of K .

17
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Remark 4.2Clearly 1KG “ 1G , dimK pKGq “ |G|, and KG is commutative if and only if G is an abelian group.
Proposition 4.3(a) Any K -representation ρ : G ÝÑ GLpV q of G gives rise to a KG-module structure on V , wherethe external composition law is defined by the map

¨ : KG ˆ V ÝÑ V
p
ř

gPG λgg, vq ÞÑ p
ř

gPG λggq ¨ v :“ ř

gPG λgρpgqpvq .
(b) Conversely, every KG-module pV ,`, ¨q defines a K -representation

ρV : G ÝÑ GLpV q

g ÞÑ ρV pgq : V ÝÑ V , v ÞÑ ρV pgqpvq :“ g ¨ v

of the group G.
Proof : (a) Since V is a K -vectore space it is equipped with an internal addition ` such that pV ,`q is anabelian group. It is then straightforward to check that the given external composition law definedabove verifies the KG-module axioms.(b) A KG-module is in particular a K -vector space for the scalar multiplication defined for all λ P Kand all v P V by

λv :“ p λ 1G
loomoon

PKG

q ¨ v .

Moreover, it follows from the KG-module axioms that ρV pgq P GLpV q and also that
ρV pg1g2q “ ρV pg1q ˝ ρV pg2q

for all g1, g2 P G, hence ρV is a group homomorphism.See [Exercise Sheet 2] for the details (Hint: use the remark below!).
Remark 4.4In fact in Proposition 4.3(a) checking the KG-module axioms is equivalent to checking that for all

g, h P G, λ P K and u, v P V :(1) pghq ¨ v “ g ¨ ph ¨ vq;(2) 1G ¨ v “ v ;(3) g ¨ pu` vq “ g ¨ u` g ¨ v ;(4) g ¨ pλvq “ λpg ¨ vq “ pλgq ¨ v ,or in other words, that the binary operation
¨ : G ˆ V ÝÑ V

pg, vq ÞÑ g ¨ v :“ ρpgqpvqis a K -linear action of the group G on V . Indeed, the external multiplication of KG on V is justthe extension by K -linearity of the latter map. For this reason, sometimes, KG-modules are alsocalled G-vector spaces. See [Exercise Sheet 2] for the details.
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Lemma 4.5Two representations ρ1 : G ÝÑ GLpV1q and ρ2 : G ÝÑ GLpV2q are equivalent if and only if V1 – V2as KG-modules.
Proof : If ρ1 „ ρ2 and α : V1 ÝÑ V2 is a K -isomorphism such that ρ2pgq “ α ˝ ρ1pgq ˝ α´1 for each g P G,then by Proposition 4.3(a) for every v P V1 and every g P G we have

g ¨ αpvq “ ρ2pgqpαpvqq “ αpρ1pgqpvqq “ αpg ¨ vq .

Hence α is a KG-isomorphism.Conversely, if α : V1 ÝÑ V2 is a KG-isomorphism, then certainly it is a K -homomorphism and for each
g P G and by Proposition 4.3(b) for each v P V2 and each g P G we have

α ˝ ρ1pgq ˝ α´1pvq “ αpρ1pgqpα´1pvqqq “ αpg ¨ α´1pvqq “ g ¨ αpα´1pvqq “ g ¨ v “ ρ2pgqpvq ,

hence ρ2pgq “ α ˝ ρ1pgq ˝ α´1 for each g P G.
Remark 4.6 (Dictionary)More generally, through Proposition 4.3, we may transport terminology and properties from KG-modules to K -representations of G and conversely.This lets us build the following dictionary:

Representations Modules
K -representation of G ÐÑ KG-moduledegree ÐÑ K -dimensionhomomorphism of representations ÐÑ homomorphism of KG-modulessubrepresentation / G-invariant subspace ÐÑ KG-submoduledirect sum of representations ρV1 ‘ ρV2 ÐÑ direct sum of KG-modules V1 ‘ V2irreducible representation ÐÑ simple (“ irreducible) KG-modulethe trivial representation ÐÑ the trivial KG-module Kthe regular representation of G ÐÑ the regular KG-module KGCorollary 3.6 to Maschke’s Theorem: ÐÑ Corollary 3.6 to Maschke’s Theorem:If charpK q ∤ |G|, then every K -represen- If charpK q ∤ |G|, then every KG-moduletation of G is completely reducible. is semisimple.
. . . . . .Virtually, any result, we have seen in Chapter 1, can be reinterpreted using this translation table.E.g. Property 2.4(c) tells us that the image and the kernel of homomorphisms of KG-modules are

KG-submodules, ...
In this lecture, we introduce the equivalence between representations and modules for the sakeof completeness. In the sequel we keep on stating results in terms of representations as much aspossible. However, we will use modules when we find them more fruitful. In contrast, the M.Sc.Lecture Representation Theory will consistently use the module approach to representation theory.



Skript zur Vorlesung: Darstellungstheorie WS 24/25, Leibniz Universität Hannover 20
Exercise 4.7 (The dual representation)Let ρV : G ÝÑ GLpV q be a K -representation.

(a) Prove that the dual space V ˚ :“ HomK pV ,K q is endowed with the structure of a KG-modulevia the left action
G ˆ V ˚ ÝÑ V ˚

pg, fq ÞÑ g.f

where pg.fqpvq :“ fpg´1vq @ v P V .
(b) Prove the following assertion using module theoretic arguments: if ρV decomposes as a directsum ρV1 ‘ ρV2 of two subrepresentations, then ρV˚ “ ρV˚1 ‘ ρV˚2 .

5 Schur’s Lemma and Schur’s Relations
Schur’s Lemma is a basic result concerning simple modules, or in other words irreducible representa-tions. Though elementary to state and prove, it is fundamental to representation theory of finite groups.
Theorem 5.1 (Schur’s Lemma)

(a) Let V ,W be simple KG-modules. Then the following assertions hold.
(i) Any homomorphism of KG-modules φ : V ÝÑ V is either zero or invertible. In otherwords EndKGpV q is a skew-field.(ii) If V fl W , then HomKGpV ,W q “ 0.

(b) If K is an algebraically closed field and V is a simple KG-module, then
EndKGpV q “ tλ IdV | λ P K u – K .

Notice that here we state Schur’s Lemma in terms of modules, rather than in terms of representations,because part (a) holds in greater generality for arbitrary unital associative rings and part (b) holds forfinite-dimensional algebras over an algebraically closed field.
Proof :(a) First, we claim that every φ P HomKGpV ,W qzt0u admits an inverse in HomKGpW,V q.Indeed, φ ‰ 0 ùñ kerφ Ĺ V is a proper KG-submodule of V and t0u ‰ Imφ is a non-zero

KG-submodule of W . But then, on the one hand, kerφ “ t0u, because V is simple, hence φ isinjective, and on the other hand, Imφ “ W because W is simple. It follows that φ is also surjective,hence bijective. Therefore, by Properties A.7, φ is invertible with inverse φ´1 P HomKGpW,V q.Now, (ii) is straightforward from the above. For (i), first recall that EndKGpV q is a ring (seeNotation A.8), which is obviously non-zero as EndKGpV q Q IdV and IdV ‰ 0 because V ‰ 0 sinceit is simple. Thus, as any φ P EndKGpV qzt0u is invertible, EndKGpV q is a skew-field.
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(b) Let φ P EndKGpV q. Since K “ K , φ has an eigenvalue λ P K . Let v P V zt0u be an eigenvector of

φ for λ. Then pφ ´ λ IdV qpvq “ 0. Therefore, φ ´ λ IdV is not invertible and
φ ´ λ IdV P EndKGpV q

paq
ùñ φ ´ λ IdV “ 0 ùñ φ “ λ IdV .

Hence EndKGpV q Ď tλ IdV | λ P K u, but the reverse inclusion also obviously holds, proving theclaim.
Exercise 5.2Prove that in terms of matrix representations the following statement holds:

Lemma 5.3 (Schur’s Lemma for matrix representations)Let R : G ÝÑ GLnpK q and R 1 : G ÝÑ GLn1pK q be two irreducible matrix representations. Ifthere exists A P Mnˆn1pK qzt0u such that AR 1pgq “ RpgqA for every g P G, then n “ n1 and Ais invertible (in particular R „ R 1).
The next lemma is a general principle, which we have already used in the proof of Maschke’s Theorem,and which allows us to transform K -linear maps into KG-linear maps.
Lemma 5.4Assume charpK q ∤ |G|. Let V ,W be two KG-modules and let ρV : G ÝÑ GLpV q, ρW : G ÝÑ GLpW qbe the associated K -representations. If ψ : V ÝÑ W is K -linear, then the map

rψ :“ 1
|G|

ÿ

gPG
ρW pgq ˝ ψ ˝ ρV pg´1q

from V to W is KG-linear.
Proof : Same argument as in (3) of the proof of Maschke’s Theorem: replace π by ψ and apply the fact that a

G-homomorphism between representations corresponds to a KG-hmomorphism between the corresponding
KG-modules.

Proposition 5.5Assume charpK q ∤ |G|. Let ρV : G ÝÑ GLpV q and ρW : G ÝÑ GLpW q be two irreducible K -representations.
(a) If ρV ȷ ρW and ψ : V ÝÑ W is a K -linear map, then

rψ :“ 1
|G|

ÿ

gPG
ρW pgq ˝ ψ ˝ ρV pg´1q “ 0 .

(b) Assume moreover that K “ K and charpK q ∤ n :“ dimK V . If ψ : V ÝÑ V is a K -linear map,then
rψ :“ 1

|G|

ÿ

gPG
ρV pgq ˝ ψ ˝ ρV pg´1q “

Trpψq

n ¨ IdV .
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Proof : Since ρV and ρW are irreducible, the associated KG-modules are simple. Moreover, by Lemma 5.4,both in (a) and (b) the map rψ is KG-linear. Therefore Schur’s Lemma yields:(a) rψ “ 0 since V fl W .(b) rψ “ λ ¨ IdV for some scalar λ P K . Therefore, on the one hand

Trprψq “
1

|G|

ÿ

gPG
Tr `ρV pgq ˝ ψ ˝ ρV pg´1q

˘

looooooooooooooomooooooooooooooon

“Trpψq

“
1

|G|
|G| Trpψq “ Trpψq

and on the other hand Trprψq “ Trpλ ¨ IdV q “ λTrpIdV q “ n ¨ λ ,hence λ “
Trpψq

n .
Next, we see that Schur’s Lemma implies certain "orthogonality relations" for the entries of matrixrepresentations.
Theorem 5.6 (Schur’s Relations)Assume charpK q ∤ |G|. Let Q : G ÝÑ GLnpK q and P : G ÝÑ GLmpK q be irreducible matrixrepresentations.

(a) If P ȷ Q, then 1
|G|

ř

gPG PpgqriQpg´1qjs “ 0 for all 1 ď r, i ď m and all 1 ď j, s ď n.
(b) If K “ K and charpK q ∤ n, then 1

|G|

ř

gPG QpgqriQpg´1qjs “ 1
nδijδrs for all 1 ď r, i, j, s ď n.

Proof : Set V :“ K n, W :“ Km and let ρV : G ÝÑ GLpV q and ρW : G ÝÑ GLpW q be the K -representationsinduced by Q and P , respectively, as defined in Remark 1.2. Furthermore, consider the K -linear map
ψ : V ÝÑ W whose matrix with respect to the standard bases of V “ K n and W “ Km is the elementarymatrix

»

—

—

–

i 1
j

fi

ffi

ffi

fl

“: Eij P MmˆnpK q

(i.e. the unique nonzero entry of Eij is its pi, jq-entry).(a) By Proposition 5.5(a),
rψ “

1
|G|

ÿ

gPG
ρW pgq ˝ ψ ˝ ρV pg´1q “ 0

because P ȷ Q, and hence ρV ȷ ρW . In particular the pr, sq-entry of the matrix of rψ with respectto the standard bases of V “ K n and W “ Km is zero. Thus,
0 “

1
|G|

ÿ

gPG

“

PpgqEijQpg´1q
‰

rs “
1

|G|

ÿ

gPG
Ppgqri ¨ 1 ¨Qpg´1qjs

because the unique nonzero entry of the matrix Eij is its pi, jq-entry.(b) Now we assume that P “ Q, and hence n “ m, V “ W , ρV “ ρW . Then by Proposition 5.5(b),
rψ :“ 1

|G|

ÿ

gPG
ρV pgq ˝ ψ ˝ ρV pg´1q “

Trpψq

n ¨ IdV “

# 1
n ¨ IdV if i “ j,0 if i ‰ j.
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Therefore the pr, sq-entry of the matrix of rψ with respect to the standard basis of V “ K n is

1
|G|

ÿ

gPG

“

QpgqEijQpg´1q
‰

rs “

#

` 1
n ¨ IdV ˘rs if i “ j,0 if i ‰ j.

Again, because the unique nonzero entry of the matrix Eij is its pi, jq-entry, it follows that
1

|G|

ÿ

gPG
QpgqriQpg´1qjs “

1
nδijδrs .

6 Representations of Finite Abelian Groups
In this section we give an immediate application of Schur’s Lemma encoding the representation theoryof finite abelian groups over an algebraically closed field K whose characteristic is coprime to the orderof the group.
Proposition 6.1Assume G is a finite abelian group, K “ K and charpK q ∤ |G|. Then, the K -dimension of any simple

KG-module is equal to 1.
Equivalently: any irreducible K -representation of G has degree 1.
Proof : Let V be a simple KG-module, and let ρV : G ÝÑ GLpV q be the underlying K -representation (i.e.as given by Proposition 4.3).Claim: any K -subspace of V is in fact a KG-submodule.Proof: Fix g P G and consider ρV pgq. By definition ρV pgq P GLpV q, hence it is a K -linear endomorphismof V . We claim that it is in fact KG-linear. Indeed, as G is abelian, @ h P G, @ v P V we have

ρV pgqph ¨ vq “ ρV pgq
`

ρV phqpvq
˘

“
“

ρV pgqρV phq
‰

pvq

“
“

ρV pghq
‰

pvq

“
“

ρV phgq
‰

pvq

“
“

ρV phqρV pgq
‰

pvq

“ ρV phq
`

ρV pgqpvq
˘

“ h ¨
`

ρV pgqpvq
˘

and it follows that ρV pgq is KG-linear, i.e. ρV pgq P EndKGpV q. Now, because K is algebraicallyclosed, by part (b) of Schur’s Lemma, there exists λg P K (depending on g) such that
ρV pgq “ λg ¨ IdV .

As this holds for every g P G, it follows that any K -subspace of V is G-invariant, which in termsof KG-modules means that any K -subspace of V is a KG-submodule of V .To conclude, as V is simple, we deduce from the Claim that the K -dimension of V must be equal to 1.
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Theorem 6.2 (Diagonalisation Theorem)Assume K “ K and charpK q ∤ |G|. Let ρ : G ÝÑ GLpV q be a K -representation of an arbitraryfinite group G. Fix g P G. Then, there exists an ordered K -basis B of V with respect to which

`

ρpgq
˘

B “

»

—

—

—

—

–

ε1 0 00 ε2
00 0 εn

fi

ffi

ffi

ffi

ffi

fl

,

where n :“ dimK pV q and each εi (1 ď i ď n) is an opgq-th root of unity in K .
Proof : Consider the restriction of ρ to the cyclic subgroup generated by g, that is the representation

ρ|xgy : xgy ÝÑ GLpV q .

By Corollary 3.6 to Maschke’s Theorem, we can decompose the representation ρ|
xgy

into a direct sum ofirreducible K -representations, say
ρ|xgy “ ρV1 ‘ ¨ ¨ ¨ ‘ ρVn ,where V1, . . . , Vn Ď V are xgy-invariant. Since xgy is abelian dimK pViq “ 1 for each 1 ď i ď n byProposition 6.1. Now, if for each 1 ď i ď n we choose a K -basis txiu of Vi, then there exist εi P K(1 ď i ď n) such that ρVipgq “ εi and B :“ px1, . . . , xnq is an ordered K -basis of V such that

`

ρpgq
˘

B “

»

—

—

—

—

–

ε1 0 00 ε2
00 0 εn

fi

ffi

ffi

ffi

ffi

fl

.

Finally, as gopgq “ 1G , it follows that for each 1 ď i ď n,
εopgq

i “ ρVipgqopgq “ ρVipg
opgqq “ ρVip1Gq “ 1K

and hence εi is an opgq-th root of unity.
Scholium 6.3Assume K “ K , charpK q ∤ |G| and G is abelian. If ρ : G ÝÑ GLpV q is a K -representationof G, then the K -endomorphisms ρpgq : V ÝÑ V with g running through G are simultaneouslydiagonalisable.
Proof : Same argument as in the previous proof, where we may replace "xgy" with the whole of G.
Exercise 6.4 (On the existence of faithful representations)Prove the following assertions.(a) The regular C-representation of any finite group is faithful.(b) Every finite simple group G admits a faithful irreducible C-representation.[Hint: Decompose the regular representation into a direct sum of irreducible subrepresentations and use (a).](c) If G “ Cn1 ˆ ¨ ¨ ¨ ˆ Cnr is a product of finite cyclic groups of order n1, . . . , nr (r P Zą0), then

G admits a faithful C-representation of degree r.



Chapter 3. Characters of Finite Groups

We now introduce the concept of a character of a finite group. These are functions G ÝÑ C, obtainedfrom the representations of the group G by post-composing with the trace map. Characters have manyremarkable properties, and they are the fundamental tools for performing computations in representa-tion theory. They encode a lot of information about the group itself and about its representations in acompact and efficient manner.
Notation: throughout this chapter, unless otherwise specified, we let:

¨ G denote a finite group;
¨ K :“ C be the field of complex numbers; and
¨ V denote a C-vector space such that dimCpV q ă 8.

Unless otherwise stated, all groups considered are assumed to be finite and all C-vector spaces / mod-ules over the group algebra considered are assumed to be finite-dimensional.
7 Characters
Definition 7.1 (Character, linear character )Let ρV : G ÝÑ GLpV q be a C-representation. The character of ρV is the C-valued function

χV : G ÝÑ C
g ÞÑ χV pgq :“ Tr `ρV pgq

˘ .We also say that ρV (or the associated CG-module V ) affords the character χV . The degree of χVis the degree of ρV . If the degree of χV is one, then χV is called a linear character.
Remark 7.2(a) Recall that in linear algebra the trace of a linear endomorphism φ may be concretely computedby taking the trace of the matrix of φ in a chosen basis of the vector space, and this isindependent of the choice of the basis.Thus to compute characters: choose an ordered basis B of V and obtain @ g P G:

χV pgq “ Tr `ρV pgq
˘

“ Tr´`ρV pgq
˘

B

¯

25



Skript zur Vorlesung: Darstellungstheorie WS 24/25, Leibniz Universität Hannover 26
(b) For a matrix representation R : G ÝÑ GLnpCq, the character of R is then

χR : G ÝÑ C
g ÞÑ χRpgq :“ Tr `Rpgq

˘ .
Example 3The character of the trivial representation of G is the function 1G : G ÝÑ C, g ÞÑ 1 and is called

the trivial character of G.
Lemma 7.3Equivalent C-representations afford the same character.
Proof : If ρV : G ÝÑ GLpV q and ρW : G ÝÑ GLpW q are two C-representations, and α : V ÝÑ W is anisomorphism of representations, then

ρW pgq “ α ˝ ρV pgq ˝ α´1 @ g P G .

Now, by the properties of the trace for any two C-endomorphisms β, γ of V we have Trpβ ˝γq “ Trpγ ˝βq,hence for every g P G we have
χW pgq “ Tr `ρW pgq

˘

“ Tr `α ˝ ρV pgq ˝ α´1˘ “ Tr `ρV pgq ˝ α´1 ˝ α
loomoon

“IdV
˘

“ Tr `ρV pgq
˘

“ χV pgq .

Terminology / Notation 7.4

¨ Again, we allow ourselves to transport terminology from representations to characters. Forexample, if ρV is irreducible (faithful, . . . ), then the character χV is also called irreducible(faithful, . . . ).
¨ We define IrrpGq to be the set of all irreducible characters of G, and LinpGq to be the set ofall linear characters of G. (We will see below that IrrpGq is a finite set.)

Properties 7.5 (Elementary properties)Let ρV : G ÝÑ GLpV q be a C-representation and let g P G. Then the following assertions hold:
(a) χV p1Gq “ dimC V ;
(b) χV pgq “ ε1 ` . . .` εn, where ε1, . . . , εn are opgq-th roots of unity in C and n “ dimC V ;
(c) |χV pgq| ď χV p1Gq;
(d) χV pg´1q “ χV pgq;
(e) if ρV “ ρV1 ‘ ρV2 is the direct sum of two subrepresentations, then χV “ χV1 ` χV2 .

Proof :(a) We have ρV p1Gq “ IdV since representations are group homomorphisms, hence χV p1Gq “ dimC V .(b) This follows directly from the diagonalisation theorem (Theorem 6.2).
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(c) By (b) we have χV pgq “ ε1 ` . . . ` εn, where ε1, . . . , εn are roots of unity in C. Hence, applyingthe triangle inequality repeatedly, we obtain that

|χV pgq| “ |ε1 ` . . .` εn| ď |ε1|
loomoon

“1
` . . .` |εn|

loomoon

“1
“ dimC V

(a)
“ χV p1Gq .

(d) Again by the diagonalisation theorem, there exists an ordered C-basis B of V and opgq-th roots ofunity ε1, . . . , εn P C such that
`

ρV pgq
˘

B “

»

—

—

—

—

–

ε1 0 00 ε2
00 0 εn

fi

ffi

ffi

ffi

ffi

fl

.

Therefore
`

ρV pg´1q
˘

B “

»

—

—

—

—

–

ε´11 0 00 ε´12
00 0 ε´1
n

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

ε1 0 00 ε2
00 0 εn

fi

ffi

ffi

ffi

ffi

fl

and it follows that χV pg´1q “ ε1 ` . . .` εn “ ε1 ` . . .` εn “ χV pgq .(e) For i P t1, 2u let Bi be an ordered C-basis of Vi and consider the C-basis B :“ B1 \B2 of V . Then,by Remark 3.2 for every g P G we have
`

ρV pgq
˘

B “

»

—

—

—

—

—

—

–

´

ρV1pgq

¯

B1 0
0 ´

ρV2pgq

¯

B2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

hence χV pgq “ Tr `ρV pgq
˘

“ Tr `ρV1pgq
˘

` Tr `ρV2pgq
˘

“ χV1pgq ` χV2pgq .

Corollary 7.6Any character of G is a sum of irreducible characters of G.
Proof : By Corollary 3.6 to Maschke’s theorem, any C-representation can be written as the direct sum ofirreducible subrepresentations. Thus the claim follows from Properties 7.5(e).
Exercise 7.7 (Characters of quotient CG-modules)Let V be a CG-module and let W ď V be a CG-submodule. Denote by χV , χW and χV {W thecharacters afforded by V , W and V {W respectively. Prove that χV “ χW ` χV {W .
Notation 7.8Recall from group theory (e.g. Algebra I,II or Einführung in die Algebra) that a group G acts on

itself by conjugation via
G ˆ G ÝÑ G
pg, xq ÞÑ gxg´1 “: gx .
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The orbits of this action are the conjugacy classes of G, we denote them by rxs :“ t gx | g P Gu,and we write CpGq :“ trxs | x P Gu for the set of all conjugacy classes of G.The stabiliser of x P G is its centraliser CGpxq “ tg P G | gx “ xu and the orbit-stabiliser theoremyields

|CGpxq| “
|G|

|rxs|
.

Moreover, a function f : G ÝÑ C which is constant on each conjugacy class of G, i.e. such that
fpgxg´1q “ fpxq @ g, x P G, is called a class function (on G).

Lemma 7.9Characters are class functions.
Proof : Let ρV : G ÝÑ GLpV q be a C-representation and let χV be its character. Again, because by theproperties of the trace we have Trpβ ˝ γq “ Trpγ ˝ βq for all C-endomorphisms β, γ of V , it follows thatfor all g, x P G,

χV pgxg´1q “ Tr `ρV pgxg´1q
˘

“ Tr `ρV pgqρV pxqρV pgq´1˘
“ Tr `ρV pxqρV pgq´1ρV pgq

looooooomooooooon

“IdV
˘

“ Tr `ρV pxq
˘

“ χV pxq .

Exercise 7.10 (Real-valued characters)Let ρV : G ÝÑ GLpV q be a C-representation and let χV be its character. Prove the followingstatements.
(a) If g P G is conjugate to g´1, then χV pgq P R.
(b) If g P G is an element of order 2, then χV pgq P Z and χV pgq ” χV p1q pmod 2q.
(c) Prove or disprove the following claims.

(Claim 1) The character values of the symmetric group Sn are real numbers for all n P Zą0 .(Claim 2) The character values of the alternating group An are real numbers for all n P Zą0 .

8 Orthogonality of Characters
We are now going to make use of results from the linear algebra on the C-vector space of C-valuedfunctions on G in order to develop further fundamental properties of characters.
Notation 8.1

(1) Let FpG,Cq :“ tf : G ÝÑ C | f functionu denote the C-vector space of C-valued functionson G. Clearly dimC FpG,Cq “ |G| because tδg : G ÝÑ C, h ÞÑ δgh | g P Gu is a C-basis.
(2) Let ClpGq :“ tf P FpG,Cq | f is a class functionu. This is clearly a C-subspace of FpG,Cqand it is called the space of class functions on G. We have dimC ClpGq “ |CpGq| as a C-basis
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of this subspace is given by the set t1C | C P CpGqu of all indicator functions of the conjugacyclasses of G.

Proposition 8.2The binary operation
x , yG : FpG,Cq ˆ FpG,Cq ÝÑ C

pf1, f2q ÞÑ xf1, f2yG :“ 1
|G|

ř

gPG f1pgqf2pgq

is a scalar product on FpG,Cq.
Proof : It is straightforward to check that x , yG is sesquilinear and Hermitian (Exercise!); it is positive definitebecause for every f P FpG,Cq,

xf , fyG “
1

|G|

ÿ

gPG
fpgqfpgq “

1
|G|

ÿ

gPG
|fpgq|2
loomoon

PRě0
ě 0

and moreover xf , fyG “ 0 if and only if f “ 0.
Remark 8.3Obviously, the scalar product x , yG restricts to a scalar product on ClpGq. Moreover, if f2 is acharacter of G, then by Property 7.5(d) we can write

xf1, f2yG “
1

|G|

ÿ

gPG
f1pgqf2pgq “

1
|G|

ÿ

gPG
f1pgqf2pg´1q .

The next theorem is the third key result of this lecture. It tells us that the irreducible characters of afinite group form an orthonormal system in ClpGq with respect to the scalar product x , yG .
Theorem 8.4 (1st Orthogonality Relations)If ρV : G ÝÑ GLpV q and ρW : G ÝÑ GLpW q are two irreducible C-representations affording thecharacters χV and χW respectively, then

xχV , χW yG “
1

|G|

ÿ

gPG
χV pgqχW pg´1q “

#1 if ρV „ ρW ,0 if ρV ȷ ρW .

Proof : Choose ordered C-bases E :“ pe1, . . . , enq and F :“ pf1, . . . , fmq of V and W respectively. Then foreach g P G write Qpgq :“ `

ρV pgq
˘

E and Ppgq :“ `

ρW pgq
˘

F . If ρV ȷ ρW compute
xχV , χW yG “

1
|G|

ÿ

gPG
χV pgqχW pg´1q “

1
|G|

ÿ

gPG
Tr `Qpgq

˘Tr `Ppg´1q
˘

“
1

|G|

ÿ

gPG

`

n
ÿ

i“1Qpgqii
˘`

m
ÿ

j“1Ppg´1qjj
˘

“

n
ÿ

i“1
m
ÿ

j“1
1

|G|

ÿ

gPG
QpgqiiPpg´1qjj

looooooooooooomooooooooooooon

“0 by (a) of Schur’s Relations
“ 0
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and similarly if ρV „ ρW , then by Lemma 7.3, we may assume w.l.o.g. that W “ V , so P “ Q and weobtain

xχV , χV yG “

n
ÿ

i“1
m
ÿ

j“1
1

|G|

ÿ

gPG
QpgqiiQpg´1qjj

looooooooooooomooooooooooooon

“ 1
n δijδij by (b) of Schur’s Relations

“

n
ÿ

i“1
1
n “ 1 .

9 Consequences of the 1st Orthogonality Relations
In this section we use the 1st Orthogonality Relations in order to deduce a series of fundamentalproperties of the (irreducible) characters of finite groups.
Corollary 9.1 (Linear independence)The irreducible characters of G are C-linearly independent.
Proof : Assume řs

i“1 λiχi “ 0, where χ1, . . . , χs are pairwise distinct irreducible characters of G, λ1, . . . , λs P

C and s P Zą0. Then the 1st Orthogonality Relations yield
0 “ x

s
ÿ

i“1 λiχi, χjyG “

s
ÿ

i“1 λi xχi, χjyG
looomooon

“δij

“ λj

for each 1 ď j ď s. The claim follows.
Corollary 9.2 (Finiteness)There are at most |CpGq| irreducible characters of G. In particular, there are only a finite numberof them.
Proof : By Corollary 9.1 the irreducible characters of G are C-linearly independent. By Lemma 7.9 irrre-ducible characters are elements of the C-vector space ClpGq. Therefore there exists at most dimC ClpGq “

|CpGq| ă 8 of them.
Corollary 9.3 (Multiplicities)Let ρV : G ÝÑ GLpV q be a C-representation and let ρV “ ρV1 ‘ ¨ ¨ ¨ ‘ ρVs be a decomposition of

ρV into irreducible subrepresentations. Then the following assertions hold.
(a) If ρW : G ÝÑ GLpW q is an irreducible C-representation of G, then the multiplicity of ρW in

ρV1 ‘ ¨ ¨ ¨ ‘ ρVs is equal to xχV , χW yG .
(b) This multiplicity is independent of the choice of the chosen decomposition of ρV into irre-ducible subrepresentations.

Proof : (a) W.l.o.g., we may assume that we have chosen the labelling such that
ρV “ ρV1 ‘ ¨ ¨ ¨ ‘ ρVl ‘ ρVl`1 ‘ ¨ ¨ ¨ ‘ ρVs ,
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where ρVi „ ρW @ 1 ď i ď l and ρVj ȷ ρW @ l ` 1 ď j ď s. Thus χVi “ χW @ 1 ď i ď l byLemma 7.3. Therefore the 1st Orthogonality Relations yield

xχV , χW yG “

l
ÿ

i“1xχVi , χW yG `

s
ÿ

j“l`1xχVj , χW yG “

l
ÿ

i“1 xχW , χW yG
looooomooooon

“1
`

s
ÿ

j“l`1 xχVj , χW yG
looooomooooon

“0
“ l .

(b) Obvious, since xχV , χW yG depends only on V and W , but not on the chosen decomposition.
We can now prove that the converse of Lemma 7.3 holds.
Corollary 9.4 (Equality of characters)Let ρV : G ÝÑ GLpV q and ρW : G ÝÑ GLpW q be C-representations with characters χV and χWrespectively. Then,

χV “ χW ô ρV „ ρW .

Proof : “ð”: The sufficient condition is the statement of Lemma 7.3.“ñ”: To prove the necessary condition decompose ρV and ρW into direct sums of irreducible subrepre-sentations
ρV “ ρV1,1 ‘ ¨ ¨ ¨ ‘ ρV1,m1

loooooooooomoooooooooonall „ρV1
‘ ¨ ¨ ¨ ‘ ρVs,1 ‘ ¨ ¨ ¨ ‘ ρVs,ms

loooooooooomoooooooooonall „ρVs

,

ρW “ ρW1,1 ‘ ¨ ¨ ¨ ‘ ρW1,p1
loooooooooomoooooooooonall „ρV1

‘ ¨ ¨ ¨ ‘ ρWs,1 ‘ ¨ ¨ ¨ ‘ ρWs,ps
loooooooooomoooooooooonall „ρVs

,

where mi, pi ě 0 for all 1 ď i ď s and the ρVi ’s are pairwise non-equivalent irreducible C-representations of G. (Some of the mi, pi’s may be zero!) Now, as we assume that χV “ χW , foreach 1 ď i ď s Corollary 9.3 yields
mi “ xχV , χViyG “ xχW , χViyG “ pi ,hence ρV „ ρW .

Corollary 9.5 (Irreducibility criterion)A C-representation ρV : G ÝÑ GLpV q is irreducible if and only if xχV , χV yG “ 1.
Proof : “ñ”: holds by the 1st Orthogonality Relations.“ð”: As in the previous proof, write

ρV “ ρV1,1 ‘ ¨ ¨ ¨ ‘ ρV1,m1
loooooooooomoooooooooonall „ρV1

‘ ¨ ¨ ¨ ‘ ρVs,1 ‘ ¨ ¨ ¨ ‘ ρVs,ms
loooooooooomoooooooooonall „ρVs

,

where mi ě 1 for all 1 ď i ď s and the ρVi ’s are pairwise non-equivalent irreducible C-representations of G. Then, using the assumption, the sesquilinearity of the scalar product and the1st Orthogonality Relations, we obtain that
1 “ xχV , χV yG “

s
ÿ

i“1m
2
i xχVi , χViyG
loooomoooon

“1
“

s
ÿ

i“1m
2
i .

Hence, w.l.o.g. we may assume that m1 “ 1 and mi “ 0 @ 2 ď i ď s, so that ρV “ ρV1 is irreducible.
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Theorem 9.6The set IrrpGq is an orthonormal C-basis (w.r.t. x , yG) of the C-vector space ClpGq of class functionson G.
Proof : We already know that IrrpGq is a C-linearly independent set and also that it forms an orthonormalsystem of ClpGq w.r.t. x , yG . Hence it remains to prove that IrrpGq generates ClpGq as a C-vector space.So let X :“ xIrrpGqyC be the C-subspace of ClpGq generated by IrrpGq. It follows that

ClpGq “ X ‘ XK

where XK denotes the orthogonal of X with respect to the scalar product x , yG . Thus it is enough toprove that XK “ 0. So let f P XK, set f̆ :“ ř

gPG fpgqg P CG and we prove the following assertions:
(1) f̆ P Z pCGq (the centre of CG): let h P G and compute

hf̆h´1 “
ÿ

gPG
fpgqhg ¨ h´1 s :“ hgh´1

“
ÿ

sPG
fph´1shq
loooomoooon

“fpsq

s “
ÿ

sPG
fpsqs “ f̆ .

Hence hf̆ “ f̆h and this equality extends by C-linearity to the whole of CG, so that f̆ P Z pCGq.(2) If V is a simple CG-module with character χV , then the external multiplication by f̆ on V is scalarmultiplication by |G|dimC V xχV , fyG P C: first notice that the external multiplication by f̆ on V , i.e. the map
f̆ ¨ ´ : V ÝÑ V , v ÞÑ f̆ ¨ v

is CG-linear (i.e. an element of EndCGpV q). Indeed, for each x P CG and each v P V we have
f̆ ¨ px ¨ vq “ pf̆ xq ¨ v “ pxf̆q ¨ v “ x ¨ pf̆ ¨ vq

because f̆ P Z pCGq. Therefore, by Schur’s Lemma, there exists a scalar λ P C such that f̆ ¨ ´ “ λ IdV .Now, setting n :“ dimCpV q, we have
λ “

1
n Trpλ IdV q “

1
n Trpf̆ ¨ ´q “

1
n
ÿ

gPG
fpgq Tr `mult. by g on V ˘

loooooooooooomoooooooooooon

“χV pgq

“
1
n
ÿ

gPG
fpgqχV pgq “

|G|

n xχV , fyG .

(3) If V is a simple CG-module with character χV , then the external multiplication by f̆ on V is zero:indeed, xχV , fyG “ 0 because f P XK and the claim follows from (2).(4) f “ 0: indeed, as the external multiplication by f̆ is zero on every simple CG-module, it is zero onevery CG-module, because any CG-module can be decomposed as the direct sum of simple submodulesby the Corollary to Maschke’s Theorem. In particular, the external multiplication by f̆ is zero on CG.Hence 0 “ f̆ ¨ 1CG “ f̆ “
ÿ

gPG
fpgqg

and we obtain that fpgq “ 0 for each g P G because G is a C-basis of CG. But then fpgq “ 0 for each
g P G and it follows that f “ 0.

The theorem now gives us the precise number of distinct irreducible characters.
Corollary 9.7The number of pairwise distinct irreducible characters of G is equal to the number of conjugacy
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classes of G. In other words,

| IrrpGq| “ |CpGq| .

Proof : By Theorem 9.6 the set IrrpGq is a C-basis of the C-vector space ClpGq of class functions on G.Hence,
| IrrpGq| “ dimC ClpGq “ |CpGq|where the second equality holds by Notation 8.1.

Corollary 9.8Let f P ClpGq. Then the following assertions hold:
(a) f “

ř

χPIrrpGqxf , χyG χ ;
(b) xf , fyG “

ř

χPIrrpGqxf , χy2
G ;

(c) f is a character ðñ xf , χyG P Zě0 @ χ P IrrpGq; and
(d) f P IrrpGq ðñ f is a character and xf , fyG “ 1.

Proof : (a)+(b) hold for any orthonormal basis with respect to a given scalar product.(c) ’ñ’: If f is a character, then by Corollary 9.3 the complex number xf , χyG is the multiplicity of χas a constituent of f for each χ P IrrpGq, hence a non-negative integer.’ð’: If for each χ P IrrpGq, xf , χyG “: mχ P Zě0, then f is the character of the representation
ρ :“ à

χPIrrpGq

mχ
à

j“1 ρpχq

where ρpχq is a C-representation affording the character χ .(d) The necessary condition is given by the 1st Orthogonality Relations. The sufficient condition followsfrom (b) and (c).
Exercise 9.9 (Character of the dual representation)

(a) Let ρV : G ÝÑ GLpV q be a C-representation with character χV . Prove using character-theoretic arguments that:
(i) the character of the dual C-representation ρV˚ is χV˚ “ χV ;(ii) ρV is irreducible if and only if ρV˚ is;(iii) if ρV decomposes as a direct sum ρV1 ‘ ρV2 of two C-subrepresentations, then ρV˚ isequivalent to ρV˚1 ‘ ρV˚2 .

(b) Determine the duals of the 3 irreducible representations of S3 given in Example 2(d), up toisomorphism.
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Exercise 9.10 (Change of the base group)Let φ : G2 ÝÑ G1 be a homomorphism of groups between two finite groups G2 and G1. Let

ρ : G1 ÝÑ GLpV q be a C-representation affording the character χ . Prove the following assertions:
(i) χ ˝ φ is a character of G2, afforded by the C-representation ρ ˝ φ;

(ii) if χ P IrrpG1q and φ is surjective, then χ ˝ φ P IrrpG2q.
Show by an example, that χ ˝ φ is, in general, not irreducible.

Exercise 9.11 (Dimension of the fixed-point space)Let V be a CG-module affording the character χV . Consider the C-subspace of fixed points underthe action of G, that is VG :“ tv P V | g ¨ v “ v @g P Gu. Prove that
dimC VG “

1
|G|

ÿ

gPG
χV pgq

in two different ways:
1. considering the scalar product of χV with the trivial character 1G ;
2. seeing VG as the image of the projector π : V ÝÑ V , v ÞÑ 1

|G|

ř

gPG g ¨ v .

10 The Regular Character
Recall from Example 1(d) that a finite left G-set X gives rise a permutation representation

ρX : G ÝÑ GLpV q

g ÞÑ ρX pgq : V ÝÑ V , ex ÞÑ eg¨xwhere V is a C-vector space with basis tex | x P Xu (i.e. indexed by the set X ). Given g P G writeFixX pgq :“ tx P X | g ¨ x “ xu for the set of fixed points of g on X .
Proposition 10.1 (Character of a permutation representation)Let X be a G-set and let χX denote the character afforded by the associated permutation repre-sentation ρX . Then

χX pgq “ | FixX pgq| @ g P G .

Proof : Let g P G. The diagonal entries of the matrix of ρX pgq expressed in the basis B :“ tex | x P Xu are:
´

`

ρX pgq
˘

B

¯

xx
“

#1 if g ¨ x “ x0 if g ¨ x ‰ x
@ x P X .

Hence taking traces, we get χX pgq “
ř

xPX

´

`

ρX pgq
˘

B

¯

xx
“ | FixX pgq|.

For the action of G on itself by left multiplication, by Example 1(d), ρX “ ρreg is the regular represen-tation of G. In this case, we obtain the values of the regular character.
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Corollary 10.2 (The regular character )Let χreg denote the character of the regular representation ρreg of G. Then

χregpgq “

#

|G| if g “ 1G ,0 otherwise.
Proof : This follows immediately from Proposition 10.1 since FixGp1Gq “ G and FixGpgq “ H for every

g P Gzt1Gu.
Theorem 10.3 (Decomposition of the regular representation)The multiplicity of an irreducible C-representation of G as a constituent of ρreg equals its degree.In other words,

χreg “
ÿ

χPIrrpGq

χp1qχ .

Proof : By Corollary 9.3 we have χreg “
ř

χPIrrpGqxχreg, χyG χ , where for each χ P IrrpGq,
xχreg, χyG “

1
|G|

ÿ

gPG
χregpgq
loomoon

“δ1g|G|by Cor. 10.2
χpgq “

|G|

|G|
χp1q “ χp1q .

Remark 10.4The theorem tells us that each irreducible C-representation (considered up to equivalence) occurswith multiplicity at least one in a decomposition of the regular representation into irreduciblesubrepresentations.
Corollary 10.5 (Degree formula)The order of the group G is given in terms of its irreducible character by the formula

|G| “
ÿ

χPIrrpGq

χp1q2 .

Proof : Evaluating the regular character at 1 P G yields
|G| “ χregp1q “

ÿ

χPIrrpGq

χp1qχp1q “
ÿ

χPIrrpGq

χp1q2 .

Exercise 10.6Use the degree formula to give a second proof of Proposition 6.1 when K “ C. In other words,prove that if G is a finite abelian group, then IrrpGq “ LinpGq .



Chapter 4. The Character Table

In Chapter 3 we have proved that for any finite group G the equality | IrrpGq| “ |CpGq| “: r holds. Thusthe values of the irreducible characters of G can be recorded in an r ˆ r-matrix, called the character
table of G. The entries of this matrix are related to each other in subtle manners, many of which areencapsulated in the 1st Orthogonality Relations and their consequences, as for example the degreeformula. Our aim in this chapter is to develop further tools and methods to compute character tables.
Notation: throughout this chapter, unless otherwise specified, we let:

¨ G denote a finite group;
¨ K :“ C be the field of complex numbers;
¨ | IrrpGq| “ |CpGq| “: r ;
¨ IrrpGq “ tχ1, . . . , χru denote the set of pairwise distinct irreducible characters of G;
¨ C1 “ rg1s, . . . , Cr “ rgrs denote the conjugacy classes of G, where g1, . . . , gr is a fixed set ofrepresentatives; and
¨ we use the convention that χ1 “ 1G and g1 “ 1 P G.

In general, unless otherwise stated, all groups considered are assumed to be finite and all C-vectorspaces / modules over the group algebra considered are assumed to be finite-dimensional.
11 The Character Table of a Finite Group
Definition 11.1 (Character table)The character table of G is the matrix XpGq :“ ´

χipgjq
¯

ij
P MrpCq .

Example 4 (The character table of a cyclic group)Let G “ xg | gn “ 1y be cyclic of order n P Zą0. Since G is abelian,IrrpGq “ tlinear characters of Guby Proposition 6.1. Moreover, | IrrpGq| “ |G| “ n as each conjugacy class is a singleton:
@ 1 ď j ď r “ n : Cj “ tgju and we set gj :“ gj´1.

36
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Let ζ be a primitive n-th root of unity in C, so that tζi | 1 ď i ď nu are all the n-th roots of unity.Now, each χi : G Ñ Cˆ is a group homomorphism and is determined by χipgq, which has to be an
n-th root of 1C . Therefore, we have n possibilities for χipgq. We set

χipgq :“ ζi´1 @ 1 ď i ď n ñ χipgjq “ ζpi´1qj @ 1 ď i ď n, 0 ď j ď n´ 1
Thus the character table of G is

XpGq “

´

χipgjq
¯1ďiďn1ďjďn

“

´

χipgj´1q

¯1ďiďn1ďjďn
“

´

ζpi´1qpj´1q
¯1ďiďn1ďjďn

,

which we visualise as follows: 1 g g2 ¨ ¨ ¨ gn´1
χ1 “ 1G 1 1 1 . . . 1
χ2 1 ζ ζ2 . . . ζn´1
χ3 1 ζ2 ζ4 . . . ζ2pn´1q

. . . . . . . . . . . . . . . . . .
χn 1 ζn´1 ζ2pn´1q . . . ζpn´1q2

Example 5 (The character table of S3)Let now G :“ S3 be the symmetric group on 3 letters. Recall from Algebra I/II that the conjugacyclasses of S3 are
C1 “ tIdu, C2 “ tp1 2q, p1 3q, p2 3qu, C3 “ tp1 2 3q, p1 3 2qu

ñ r “ 3, |C1| “ 1, |C2| “ 3, |C3| “ 2 .In Example 2(d) we have exhibited three non-equivalent irreducible matrix representations of S3,which we denoted ρ1, ρ2, ρ3. For each 1 ď i ď 3 let χi be the character of ρi and ni be its degree,so that n1 “ n2 “ 1 and n3 “ 2. Hence
n21 ` n22 ` n23 “ 6 “ |G| .

Therefore, the degree formula tells us that ρ1, ρ2, ρ3 are allthe irreducible matrix representations of S3, up to equivalence.We note that n1 “ n2 “ 1, n3 “ 2 is in fact the uniquesolution (up to relabelling) to the equation given by the degreeformula! Taking traces of the matrices in Example 2(d) yieldsthe character table of S3.

Id p1 2q p1 2 3q

χ1 1 1 1
χ2 1 -1 1
χ3 2 0 -1

In the next sections we want to develop further techniques to compute character tables of finite groups,before we come back to further examples of such tables for larger groups.
Exercise 11.2Compute the character table of the Klein-four group C2 ˆ C2 and of C2 ˆ C2 ˆ C2. Compute thecharacter table of an arbitrary finite abelian group.
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12 The 2nd Orthogonality Relations
The 1st Orthogonality Relations provide us with orthogonality relations between the rows of the char-acter table. They can be rewritten as follows in terms of matrices.
Exercise 12.1Let G be a finite group. Set X :“ XpGq and

C :“
»

—

—

—

—

–

|CGpg1q| 0 00 |CGpg2q|

00 0 |CGpgrq|

fi

ffi

ffi

ffi

ffi

fl

P MrpCq .

Use the Orbit-Stabiliser Theorem in order to prove that the 1st Orthogonality Relations can berewritten under the form
XC´1XTr

“ Ir ,where XTr denotes the transpose of the complex-conjugate X of the character table X of G.Deduce that the character table is invertible.There are also some orthogonality relations between the columns of the character table. These caneasily be deduced from the 1st Orthogonality Relations given above in terms of matrices.
Theorem 12.2 (2nd Orthogonality Relations)With the notation of Exercise 12.1 we have

XTr X “ C .

In other words,
ÿ

χPIrrpGq

χpgiqχpgjq “ δij
|G|

|rgis|
“ δij |CGpgiq| @ 1 ď i, j ď r .

Proof : Taking complex conjugation of the formula given by the 1st Orthogonality Relations (Exercise 12.1)yields:
XC´1XTr

“ Ir ùñ XC´1XTr “ IrNow, since X is invertible, so are all the matrices in the above equations and hence XTr “
`

XC´1˘´1.It follows that
XTr X “

`

XC´1˘´1X “ CX´1X “ C .The second formula is now obtained by considering the entry pi, jq in the above matrix equation for all1 ď i, j ď r.
Exercise 12.3Prove that the degree formula can be read off from the 2nd Orthogonality Relations.
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13 Tensor Products of Representations and Characters
Tensor products of vector spaces and matrices are recalled/introduced in Appendix C. We are now goingto use this construction to build products of characters.
Proposition 13.1Let G and H be finite groups, and let ρV : G ÝÑ GLpV q and ρW : H ÝÑ GLpW q be C-representations with characters χV and χW respectively. Then

ρV b ρW : G ˆH ÝÑ GLpV bC W q

pg, hq ÞÑ pρV b ρW qpg, hq :“ ρV pgq b ρW phq(where ρV pgq bρW phq is the tensor product of the C-endomorphisms ρV pgq : V ÝÑ V and ρW phq :
W ÝÑ W as defined in Lemma-Definition C.4) is a C-representation of G ˆ H , called the tensor
product of ρV and ρW , and the corresponding character, which we denote by χVbCW

, is
χVbCW “ χV ¨ χW ,

where χV ¨ χW pg, hq :“ χV pgq ¨ χW phq @ pg, hq P G ˆH .
Proof : First note that ρV b ρW is well-defined by Lemma-Definition C.4 and it is a group homomorphismbecause

`

ρV b ρW
˘

pg1g2, h1h2qrv b ws “
`

ρV pg1g2q b ρW ph1h2q
˘

rv b ws

“ ρV pg1g2qrvs b ρW ph1h2qrws

“ ρV pg1q ˝ ρV pg2qrvs b ρW ph1q ˝ ρW ph2qrws

“ ρV pg1q b ρW ph1q
“

ρV pg2qrvs b ρW ph2qrws
‰

“
`

ρV pg1q b ρW ph1q
˘

˝
`

ρV pg2q b ρW ph2q
˘

rv b ws

“
`

ρV b ρW
˘

pg1, h1q ˝
`

ρV b ρW
˘

pg2, h2qrv b ws

@ g1, g2 P G, h1, h2 P H , v P V , w P W . Furthermore, for each g P G and each h P H ,
χVbCW pg, hq “ Tr `pρV b ρW qpg, hq

˘

“ Tr `ρV pgq b ρW phq
˘

“ Tr `ρV pgq
˘

¨ Tr `ρW phq
˘

“ χV pgq ¨ χW phq

by Lemma-Definition C.4, hence χVbCW
“ χV ¨ χW .

Remark 13.2The diagonal inclusion ı : G ÝÑ G ˆ G, g ÞÑ pg, gq of G in the product G ˆ G is a grouphomomorphism with ıpGq – G. Therefore, if G “ H , then
G ı

ÝÑ G ˆ G χV ¨ χW
ÝÑ C, g ÞÑ pg, gq ÞÑ χV pgq ¨ χW pgq

becomes a character of G, which we also denote by χV ¨ χW .
Corollary 13.3If G and H are finite groups, then IrrpG ˆHq “ tχ ¨ ψ | χ P IrrpGq, ψ P IrrpHqu.
Proof : [Exercise]. Hint: Use Corollary 9.8(d) and the degree formula.
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Exercise 13.4

(a) If λ, χ P IrrpGq and λp1q “ 1, then λ ¨ χ P IrrpGq.
(b) The set LinpGq “ tχ P IrrpGq | χp1q “ 1u of linear characters of a finite group G forms agroup for the product of characters.

14 Normal Subgroups and Inflation
Whenever a group homomorphism G ÝÑ H and a representation of H are given, we obtain a represen-tation of G by composition. In particular, we want to apply this principle to normal subgroups N ⊴ Gand the corresponding quotient homomorphism, which we always denote by π : G ÝÑ G{N,g ÞÑ gN .
We will see that by this means, copies of the character tables of quotient groups of G all appear in thecharacter table of G. This observation, although straightforward, will allow us to fill out the charactertable of a group very rapidly, provided it possesses normal subgroups.
Definition 14.1 (Inflation)Let N ⊴ G and let π : G ÝÑ G{N,g ÞÑ gN be the quotient homomorphism. Given a C-representation ρ : G{N ÝÑ GLpV q, we set

InfGG{Npρq :“ ρ ˝ π : G ÝÑ GLpV q .

This is a C-representation of G (see Exercise 9.10), called the inflation of ρ from G{N to G.
Note that some texts also call InfGG{Npρq the lift or the restriction of ρ along π.
Remark 14.2

(a) If the character afforded by ρ is χ , then by Exercise 9.10(i), the character afforded by InfGG{Npρqis InfGG{Npχq :“ χ ˝ π. We also call it the inflation of χ from G{N to G. Clearly, the valuesof InfGG{Npχq are given by the formula
InfGG{Npχqpgq “ χpgNq @g P G .

(b) By Exercise 9.10(iii), if ρ (resp. χ) is irreducible, then so is InfGG{Npρq (resp. InfGG{Npχq).
Exercise 14.3Let N ⊴ G and let ρ : G{N ÝÑ GLpV q be a C-representation of G{N . Compute the kernel ofInfGG{Npρq provided that ρ is faithful.
Definition 14.4 (Kernel of a character )The kernel of a character χ of G is kerpχq :“ tg P G | χpgq “ χp1qu.
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Example 6

(a) χ “ 1G the trivial character ñ kerpχq “ G.
(b) G “ S3, χ “ χ2 the sign character ñ kerpχq “ C1 Y C3 “ xp123qy; whereas kerpχ3q “ t1u.(See Example 5.)

Lemma 14.5Let ρ : G ÝÑ GLpV q be a C-representation of G affording the character ψ. Then kerpψq “ kerpρq,thus it is a normal subgroup of G.
Proof : [Exercise]
Theorem 14.6Let N ⊴ G. ThenInfGG{N : tcharacters of G{Nu ÝÑ tcharacters ψ of G | N ď kerpψqu

χ ÞÑ InfGG{Npχq

is a bijection and so is its restriction to the irreducible characters
InfGG{N : IrrpG{Nq ÝÑ tψ P IrrpGq | N ď kerpψqu

χ ÞÑ InfGG{Npχq .
Proof : First we prove that the first map is well-defined and bijective.

¨ Let χ be a character of G{N . By Remark 14.2, N is in the kernel of InfGG{Npχq, hence the first mapis well-defined.
¨ Now let ψ be a character of G with N ď kerpψq and assume ψ is afforded by the C-representation
ρ : G ÝÑ GLpV q.

G GLpV q

G{N

π

ρ

ö

D! rρ
By Lemma 14.5 we have kerpψq “ kerpρq ě N . Therefore, by theuniversal property of the quotient, ρ induces a unique C-representation
rρ : G{N ÝÑ GLpV q with the property that rρ ˝ π “ ρ.

Letting χ be the character afforded by rρ, it follows that ρ “ InfGG{Nprρq and ψ “ InfGG{Npχq. Thusthe 1st map is surjective. Its injectivity is clear (e.g. by Remark 14.2).The second map is well-defined by the above and Exercise 14.3(a). It is injective because it is just therestriction of the 1st map to the IrrpG{Nq, whereas it is surjective by the same argument as above as theconstructed representation rρ is clearly irreducible if ρ is, as rρ ˝ π “ ρ.
Exercise 14.7Let G be a finite group. Prove that if N ⊴ G, then

N “
č

χPIrrpGq

NĎkerpχq

kerpχq .
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It follows immediately from the above exercise that the lattice of normal subgroups of G can be readoff from its character table. The theorem also implies that it can be read off from the character table,whether the group is abelian or simple.
Corollary 14.8(a) Inflation from the abelianization induces a bijection

InfGG{G1 : IrrpG{G1q LinpGq
„ .

In particular, G has precisely |G : G1| linear characters.
(b) The group G is abelian if and only if all its irreducible characters are linear.

Proof :(a) First, we claim that if ψ P LinpGq, then G1 is in its kernel. Indeed, if ψp1q “ 1, then ψ : G ÝÑ Cˆis a group homomorphism. Therefore, as Cˆ is abelian,
ψprg, hsq “ ψpghg´1h´1q “ ψpgqψphqψpgq´1ψphq´1 “ ψpgqψpgq´1ψphqψphq´1 “ 1

for all g, h P G, and hence G1 “ xrg, hs | g, h P Gy ď kerpχq. In addition, any irreducible characterof G{G1 is linear by Proposition 6.1 because G{G1 is abelian. Thus Theorem 14.6 yields a bijection
IrrpG{G1q “ LinpG{G1q tψ P IrrpGq | G1 ď kerpψqu “ LinpGq,„InfGG{G1

as required.(b) The group G is abelian if and only if G{G1 “ G, which happens if and only if InfGG{G1 “ Id. Hence,the claim follows from (a).
Corollary 14.9A finite group G is simple ðñ χpgq ‰ χp1q @ g P Gzt1u and @ χ P IrrpGqzt1Gu.
Proof : [Exercise]
Exercise 14.10Compute the complex character table of the alternating group A4 through the following steps:

1. Determine the conjugacy classes of A4 (there are 4 of them) and the corresponding centraliserorders.
2. Determine the degrees of the 4 irreducible characters of A4.
3. Determine the linear characters of A4.
4. Determine the non-linear character of A4 using the 2nd Orthogonality Relations.

To finish this section we show how to compute the character table of the symmetric group S4 combiningseveral of the techniques we have developed in this chapter.
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Example 7 (The character table of S4)Again, the conjugacy classes of S4 are given by the cycle types. We fix

C1 “ tIdu, C2 “ rp1 2qs, C3 “ rp1 2 3qs, C4 “ rp1 2qp3 4qs, C5 “ rp1234qs

ñ r “ 5, |C1| “ 1, |C2| “ 6, |C3| “ 8, |C4| “ 3, |C5| “ 6 .Hence, | IrrpGq| “ |CpGq| “ 5 and as always we may assume that χ1 “ 1G is the trivial character.
Recall that V4 “ tId, p1 2qp3 4q, p1 3qp2 4q, p1 4qp2 3qu ⊴ S4 with S4{V4 – S3 (seeAlgebra!).Therefore, by Theorem 14.6 we can "inflate" the character table of S4{V4 – S3 to S4 (see Example 5for the character table of S3). This provides us with three irreducible characters χ1, χ2 and χ3 of
S4: Id p1 2q p1 2 3q p1 2qp3 4q p1 2 3 4q

|CGpgiq| 24 4 3 8 4
χ1 1 1 1 1 1
χ2 1 -1 1 1 -1
χ3 2 0 -1 2 0
χ4 . . . . .
χ5 . . . . .Here we have computed the values of χ2 and χ3 using Remark 14.2 as follows:

¨ Inflation preserves degrees, hence it follows from Example 5 that χ2pIdq “ 1 and χ3pIdq “ 2.(Up to relabelling!)
¨ As C4 “ rp1 2qp3 4qs Ď V4, p1 2qp3 4q P kerpχiq for i “ 2, 3 and hence χ2pp1 2qp3 4qq “ 1 and
χ3pp1 2qp3 4qq “ 2.

¨ By Remark 14.2 the values of χ2 and χ3 at p1 2q and p1 2 3q are given by the correspondingvalues in the character table of S3. (Here it is enough to argue that the isomorphism between
S4{V4 and S3 must preserve orders of elements, hence also the cycle type in this case.)

¨ Finally, we compute that p1 2 3 4q “ p1 2q P S4{V4, hence χipp1 2 3 4qq “ χipp1 2qq for
i “ 2, 3.Therefore, it remains to compute χ4 and χ5. To begin with the degree formula yields

5
ÿ

i“1χipIdq2 “ 24 ùñ χ4pIdq2 ` χ5pIdq2 “ 18 ùñ χ4pIdq “ χ5pIdq “ 3 .
Next, the 2nd Orthogonality Relations applied to the 3rd column with itself read

5
ÿ

i“1χipp1 2 3qqχipp1 2 3qq “

5
ÿ

i“1χipp1 2 3qqχipp1 2 3q´1q “ |CGpp1 2 3qq| “ 3 ,
hence 1 ` 1 ` 1 ` χ4pp1 2 3qq2 ` χ5p1 2 3qq2 “ 3 and it follows that χ4pp1 2 3qq “ χ5pp1 2 3qq “ 0.Similarly, the 2nd Orthogonality Relations applied to the 2nd column with itself / the 4th columnwith itself and the 5th column with itself yield that all other entries squared are equal to 1, henceall other entries are ˘1.
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The 2nd Orthogonality Relations applied to the 1st and 2nd columns give the 2nd column, i.e.
χ4pp1 2qq “ 1 and χ5pp1 2qq “ ´1 (up to swapping χ4 and χ5).Then the 1st Orthogonality Relations applied to the 3rd and the 4th row yield

0 “

5
ÿ

k“1
1

|CGpgkq|
χ3pgkqχ4pgkq “

624 `
14χ4pp1 2qp3 4qq ñ χ4pp1 2qp3 4qq “ ´1 .

Similar with the 3rd row and the 5th row: χ5pp1 2qp3 4qq “ ´1. Finally the 1st Orthogonal-ity Relations applied to the 1st and the 4th (resp. 5th) row yield χ4pp1 2 3 4qq “ ´1 (resp.
χ5pp1 2 3 4qq “ 1). Thus the character table of S4 is:

Id p1 2q p1 2 3q p1 2qp3 4q p1 2 3 4q

|CGpgiq| 24 4 3 8 4
χ1 1 1 1 1 1
χ2 1 -1 1 1 -1
χ3 2 0 -1 2 0
χ4 3 1 0 -1 -1
χ5 3 -1 0 -1 1

Remark 14.11Two non-isomorphic groups can have the same character table. E.g.: Q8 and D8, but Q8 fl D8.Thus, the character table does not determine:
• the group up to isomorphism;
• the full lattice of subgroups;
• the orders of elements.
• . . .

Exercise 14.12Compute the character tables of D8 and Q8.[Hint: In each case, determine the commutator subgroup and deduce that there are 4 linear characters.]
Exercise 14.13 (The determinant of a representation)If ρ : G ÝÑ GLpV q is a C-representation of G and det : GLpV q ÝÑ C˚ denotes the determinanthomomorphism, then we define a linear character of G via

detρ :“ det ˝ρ : G ÝÑ C˚ ,

called the determinant of ρ. Prove that, although the finite groups D8 and Q8 have the samecharacter table, they can be distinguished by considering the determinants of their irreducible
C-representations.
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Exercise 14.14Prove the follwing assertions:

(a) If G is a non-abelian simple group (or more generally if G is perfect, i.e. G “ rG,Gs), thenthe image ρpGq of any C-representation ρ : G ÝÑ GLpV q is a subgroup of SLpV q.(b) No simple group G has an irreducible character of degree 2.Assume that G is simple and ρ : G ÝÑ GL2pCq is an irreducible matrix representation of G with character χ andproceed as follows:
1. Prove that ρ is faithful and G is non-abelian.3. Determine the determinant detρ of ρ.4. Prove that |G| is even and G admits an element x of order 2.5. Prove that xxy ◁ G and conclude that assertion (b) holds.



Chapter 5. Integrality and Theorems of Burnside’s

The main aim of this chapter is to prove Burnside’s paqb theorem, which provides us with a solubilitycriterion for finite groups of order paqb with p, q prime numbers, which is extremely hard to proveby purely group theoretic methods. To reach this aim, we need to develop techniques involving theintegrality of character values and further results of Burnside’s on the vanishing of character values.
Notation: throughout this chapter, unless otherwise specified, we let:

¨ G denote a finite group;
¨ K :“ C be the field of complex numbers;
¨ IrrpGq :“ tχ1, . . . , χru denote the set of pairwise distinct irreducible characters of G;
¨ C1 “ rg1s, . . . , Cr “ rgrs denote the conjugacy classes of G, where g1, . . . , gr is a fixed set ofrepresentatives; and
¨ we use the convention that χ1 “ 1G and g1 “ 1 P G.In general, unless otherwise stated, all groups considered are assumed to be finite and all C-vectorspaces / modules over the group algebra considered are assumed to be finite-dimensional.

15 Algebraic Integers and Character Values
First we investigate the algebraic nature of character values.
Recall: (See Appendix D for details.)An element b P C which is integral over Z is called an algebraic integer. In other words, b P C is analgebraic integer if b is a root of a monic polynomial f P ZrX s.Algebraic integers have the following properties:

¨ The integers are clearly algebraic integers.
¨ Roots of unity are algebraic integers, as they are roots of polynomials of the form Xm ´1 P ZrX s.
¨ The algebraic integers form a subring of C. In particular, sums and products of algebraic integersare again algebraic integers.
¨ If b P Q is an algebraic integer, then b P Z. In other words tb P Q | b algebraic integeru “ Z.

46
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Corollary 15.1Character values are algebraic integers.
Proof : By the above, roots of unity are algebraic integers. Since the algebraic integers form a ring, so aresums of roots of unity. Hence the claim follows from Property 7.5(b).
16 Central Characters
We now extend representations/characters of finite groups to "representations/characters" of the centreof the group algebra CG in order to obtain further results on character values.
Definition 16.1 (Class sums)The elements pCj :“ ř

gPCj g P CG (1 ď j ď r) are called the class sums of G.
Lemma 16.2The set of all class sums tpCj | 1 ď j ď ru is a C-basis of Z pCGq. In other words, Z pCGq “

Àr
j“1 CpCj .

Proof : Notice that the class sums are clearly C-linearly independent in the group algebra CG because thegroup elements are. Hence, we do have a direct sum Àr
j“1 CpCj in CG and it is enough to prove that thisdirect sum is equal to Z pCGq.’Ě’: @ 1 ď j ď r and @ g P G, we have

g ¨ pCj “ gpg´1
pCjgq “ pCj ¨ g

and extending by C-linearity, we get a ¨ pCj “ pCj ¨ a @ 1 ď j ď r and @ a P CG, proving that
Àr

j“1 CpCj Ď Z pCGq.’Ď’: Let a P Z pCGq and write a “
ř

gPG λgg with tλgugPG Ď C. Since a is central, for every h P G, wehave
ÿ

gPG
λgg “ a “ hah´1 “

ÿ

gPG
λgphgh´1q .

Comparing coefficients yield λg “ λhgh´1 @ g, h P G. Namely, the coefficients λg are constant onthe conjugacy classes of G, and hence
a “

r
ÿ

j“1 λgj pCj P

r
à

j“1 CpCj .

Now, notice that by definition the class sums pCj (1 ď j ď r) are elements of the subring ZG of CG,hence of the centre of ZG.
Corollary 16.3

(a) The centre Z pZGq of the group ring ZG is finitely generated as a Z-module.
(b) The centre Z pZGq of the group ring ZG is integral over Z; in particular the class sums pCj(1 ď j ď r) are integral over Z.
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Proof :(a) It follows directly from the second part of the proof of Lemma 16.2 that the class sums pCj (1 ď j ď r)span Z pZGq as a Z-module.(b) The centre Z pZGq is integral over Z by Theorem D.2 because it is finitely generated as a Z-moduleby (a).
Notation 16.4 (Central characters)If χ P IrrpGq, then we may consider a C-representation affording χ , say ρχ : G ÝÑ GLpCnpχqq “AutCpCnpχqq with npχq :“ χp1q. This group homomorphism extends by C-linearity to a C-algebrahomomorphism

rρχ : CG ÝÑ EndCpCnpχqq

a “
ř

gPG λgg ÞÑ rρχpaq “
ř

gPG λgρχpgq .

Now, if z P Z pCGq, then for each g P G, we have
rρχpzqrρχpgq “ rρχpzgq “ rρχpgzq “ rρχpgqrρχpzq .

As we have already seen in Chapter 2 on Schur’s Lemma this means that rρχpzq is CG-linear. Thisholds in particular if z is a class sum. Therefore, by Schur’s Lemma, for each 1 ď j ď r there existsa scalar ωχppCjq P C such that
rρχppCjq “ ωχppCjq ¨ IdCnpχq .The functions defined by

ωχ : Z pCGq ÝÑ C
pCj ÞÑ ωχppCjq(where χ runs through IrrpGq) and extended by C-linearity to the whole of Z pCGq are homomor-phisms of C-algebras; they are called the central characters of CG (or simply of G).

Remark 16.5If z P Z pGq, then rzs “ tzu and therefore the corresponding class sum is z itself. Therefore, we maysee the functions ωχ |ZpGq : Z pGq ÝÑ C as C-representations of Z pGq of degree 1, or equivalentlyas linear characters of Z pGq.
Theorem 16.6 (Integrality Theorem)The values ωχppCjq pχ P IrrpGq, 1 ď j ď rq of the central characters of G are algebraic integers.Moreover,

ωχppCjq “
|Cj |
χp1q

χpgjq @ χ P IrrpGq, @ 1 ď j ď r .

Proof : Let χ P IrrpGq and 1 ď j ď r. By Corollary 16.3 the class sum pCj is integral over Z. Thus there existintegers n P Zą0 and a0, . . . , an´1 P Z such that pCn
j ` an´1pCn´1

j ` . . . ` a0 “ 0. Applying ωχ yields
ωχppCjqn ` an´1ωχppCjqn´1 ` . . .` a0 “ ωχp0q “ 0, so that ωχppCjq is an algebraic integer.Now, according to Notation 16.4 we have

χp1qωχppCjq “ Tr `rρχppCjq
˘

“ Tr ` ÿ

gPCj

ρχpgq
˘

“
ÿ

gPCj

Tr `ρχpgq
˘

“
ÿ

gPCj

χpgq “ |Cj |χpgjq ,
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where the last equality holds because characters are class functions. The claim follows.

Corollary 16.7If χ P IrrpGq, then χp1q divides |G|.
Proof : By the 1st Orthogonality Relations we have

|G|

χp1q
“

|G|

χp1q
xχ, χyG “

1
χp1q

ÿ

gPG
χpgqχpg´1q “

1
χp1q

r
ÿ

j“1 |Cj |χpgjqχpg´1
j q “

r
ÿ

j“1
|Cj |
χp1q

χpgjq
looooomooooon

ωχ ppCjq

χpg´1
j q .

Now, for each 1 ď j ď r, ωχpgjq is an algebraic integer by the Integrality Theorem and χpg´1
j q is analgebraic integer by Corollary 15.1. Hence |G|{χp1q is an algebraic integer because these form a subringof C. Moroever, clearly |G|{χp1q P Q. As the algebraic integers in Q are just the elements of Z, weobtain that |G|{χp1q P Z, as claimed.

Example 8 (The degrees of the irreducible characters of GL3pF2q)The group G :“ GL3pF2q is a simple group of order
|G| “ # F2-bases of F32 “ p23 ´ 1qp23 ´ 2qp23 ´ 22q “ 168 “ 23 ¨ 3 ¨ 7 .

For the purpose of this example we accept without proof that G is simple and that it has 6 conjugacyclasses.
Question: can we compute the degrees of the irreducible characters of GL3pF2q?

(1) By the above | IrrpGq| “ |CpGq| “ 6 and the degree formula yields:
1 `

6
ÿ

i“2χip1q2 “ |G| “ 168 .
(2) Next, as G is simple non-abelian, G “ G1 and therfeore G has |G : G1| “ 1 linear charactersby Corollary 14.8, namely

χip1q ě 2 for each 2 ď i ď 6 .Thus, at this stage, we would have the following possibilities for the degrees of the 6 irre-ducible characters of G:
χ1p1q χ2p1q χ3p1q χ4p1q χ5p1q χ6p1q1 2 4 5 5 91 2 3 3 8 91 2 5 5 7 81 2 4 7 7 71 3 3 6 7 8

(3) By Corollary 16.7 we now know that χip1q | |G| for each 2 ď i ď 6. Therefore, as 5 ∤ |G| and9 ∤ |G|, the first three rows can already be discarded:
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χ1p1q χ2p1q χ3p1q χ4p1q χ5p1q χ6p1q1 2 4 �A5 �A5 �A91 2 3 3 8 �A91 2 �A5 �A5 7 81 2 4 7 7 71 3 3 6 7 8

(4) In order to eliminate the last-but-one possibility, we use Exercise 14.14 telling us that asimple group cannot have an irreducible character of degree 2. Hence
χ1p1q “ 1 , χ2p1q “ 3 , χ3p1q “ 3 , χ4p1q “ 6 , χ5p1q “ 7 , χ6p1q “ 8 .

Exercise 16.8Let G be a finite group of odd order and, as usual, let r denote the number of conjugacy classesof G. Use character theory to prove that
r ” |G| pmod 16q .

[Hint: Label the set IrrpGq of irreducible characters taking dual characters into account. Use the divisibility property ofCorollary 16.7]

17 The Centre of a Character
Definition 17.1 (Centre of a character )The centre of a character χ of G is Z pχq :“ tg P G | |χpgq| “ χp1qu.
Note: Recall that in contrast, χpgq “ χp1q ô g P kerpχq.
Example 9Recall from Example 5 that the character table of G “ S3 isId p12q p123q

χ1 1 1 1
χ2 1 -1 1
χ3 2 0 -1Hence Z pχ1q “ Z pχ2q “ G and Z pχ3q “ tIdu.

Lemma 17.2If ρ : G ÝÑ GLpV q is a C-representation affording the character χ and g P G, then:
|χpgq| “ χp1q ðñ ρpgq P Cˆ IdV .

In other words Z pχq “ ρ´1`Cˆ IdV ˘.
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Proof : Let n :“ χp1q. Recall that we can find a C-basis B of V such that pρpgqqB is a diagonal matrixwith diagonal entries ε1, . . . , εn which are opgq-th roots of unity. Hence ε1, . . . , εn are the eigenvaluesof ρpgq. Applying the Cauchy-Schwarz inequality to the vectors v :“ pε1, . . . , εnq and w :“ p1, . . . , 1q in

Cn yields
|χpgq| “ |ε1 ` . . .` εn| “ |xv, wy| ď ||v || ¨ ||w|| “

?
n

?
n “ n “ χp1qand equality implies that v and w are C-linearly dependent so that ε1 “ . . . “ εn “: ε . Therefore

ρpgq P Cˆ IdV . Conversely, if ρpgq P Cˆ IdV , then there exists λ P Cˆ such that ρpgq “ λ IdV . Thereforethe eigenvalues of ρpgq are all equal to λ, i.e. λ “ ε1 “ . . . “ εn and therefore
|χpgq| “ |nλ| “ n|λ| “ n ¨ 1 “ n .

Proposition 17.3Let χ be a character of G. Then:
(a) Z pχq ⊴ G;
(b) kerpχq ⊴ Z pχq and Z pχq{ kerpχq is a cyclic group;
(c) if χ is irreducible, then Z pχq{ kerpχq “ Z pG{ kerpχqq.

Proof : Let ρ : G ÝÑ GLpV q be a C-representation affording χ and set n :“ χp1q.(a) Clearly Cˆ IdV ď Z pGLpV qq and hence Cˆ IdV ⊴GLpV q. Therefore, by Lemma 17.2,
Z pχq “ ρ´1`Cˆ IdV ˘⊴ G

as the pre-image under a group homomorphism of a normal subgroup.(b) By the definitions of the kernel and of the centre of a character, we have kerpχq Ď Z pχq. Thereforekerpχq ⊴ Z pχq by (a). By Lemma 17.2 restriction to Z pχq yields a group homomorphism
ρ|Zpχq

: Z pχq Cˆ IdV
with kernel kerpχq. Therefore, by the 1st ismomorphism theorem, Z pχq{ kerpχq is isomorphic to afinite subgroup of Cˆ IdV – Cˆ, hence is cyclic.(c) By the arguments of (a) and (b) we have

Z pχq{ kerpχq – ρ
`

Z pχq
˘

ď Z
`

ρpGq
˘

.

Applying again the first isomorphism theorem we have ρpGq – G{ kerpρq, hence
Z
`

ρpGq
˘

– Z
`

G{ kerpρq
˘

“ Z
`

G{ kerpχq
˘

.

Now let g kerpχq P Z pG{ kerpχqq, where g P G. As χ is irreducible, by Schur’s Lemma, there exists
λ P Cˆ such that ρpgq “ λ IdV . Thus g P Z pχq and it follows that

Z
`

G{ kerpχq
˘

ď Z pχq{ kerpχq .

Exercise 17.4Prove that if χ P IrrpGq, then Z pGq ď Z pχq. Deduce that ŞχPIrrpGq Z pχq “ Z pGq.
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Exercise 17.5Prove that, if χ P IrrpGq, then χp1q | |G : Z pχq|. Deduce that χp1q | |G : Z pGq|.
This allows us to prove an important criterion, due to Burnside, for character values to be zero.
Theorem 17.6 (Burnside)Let χ P IrrpGq and let C “ rgs be a conjugacy class of G such that gcdpχp1q, |C |q “ 1. Then

χpgq “ 0 or g P Z pχq.
Proof : As gcdpχp1q, |C |q “ 1, there exist u, v P Z such that uχp1q ` v |C | “ 1 Set α :“ χpgq

χp1q
. Then

α “
χpgq

χp1q
¨ 1 “

χpgq

χp1q

`

uχp1q ` v |C |
˘

“ uχpgq ` v |C |χpgq

χp1q
“ uχpgq ` vωχpCq

is an algebraic integer because both χpgq and ωχpCq are. Now, set m :“ |xgy| and let ζm :“ e 2πi
m . As

χpgq is a sum of m-th roots of unity, certainly χpgq P Qpζmq. Let G be the Galois group of the Galoisextension Q Ď Qpζmq. Then for each field automorphism σ P G, σpαq is also an algebraic integer because
α and σpαq are roots of the same monic integral polynomial. Hence β :“ ś

σPG σpαq is also an algebaricinteger and because σpβq “ β for every σ P G, β is an element of the fixed field of G, namely β P Q(Galois theory). Therefore β P Z.If g P Z pχq, then there is nothing to do. Thus we may assume that g R Z pχq. Then |χpgq| ‰ χp1q, sothat by Property 7.5(c) we must have |χpgq| ă χp1q and hence |α| ă 1. Now, again by Property 7.5(b),
χpgq “ ε1 ` . . . ` εn with n “ χp1q and ε1, . . . , εn m-th roots of unity. Therefore, for each σ P GztIdu,we have σpχpgqq “ σpε1q ` . . . ` σpεnq with σpε1q, . . . , σpεnq m-th roots of unity, because ε1, . . . , εnare. It follows that

|σpχpgqq| “ |σpε1q ` . . .` σpεnq| ď |σpε1q| ` . . .` |σpεnq| “ n “ χp1q

and hence
|σpαq| “

1
χp1q

|σpχpgqq| ď
χp1q

χp1q
“ 1 .

Thus
|β| “ |

ź

σPG
σpαq| “ |α|

loomoon

ă1
¨

ź

σPGztIdu

|σpαq|
loomoon

ď1
ă 1 .

The only way an integer satisfies this inequality is β “ 0. Thus α “ 0 as well, which implies that
χpgq “ 0.

Corollary 17.7Assume now that G is a non-abelian simple group. In the situation of Theorem 17.6 if we assumemoreover that χp1q ą 1 and C ‰ t1u, then it is always the case that χpgq “ 0.
Proof : Assume χpgq ‰ 0, then Theorem 17.6 implies that g P Z pχq, so Z pχq ‰ 1. As G is simple and

Z pχq ⊴ G by Proposition 17.3(a), we have Z pχq “ G. Moreover, the fact that G is simple also impliesthat kerpχq “ 1, as if it were G, then χ would be reducible. Thus, it follows from Proposition 17.3 that
G “ Z pχq{ kerpχq “ Z pG{ kerpχqq “ Z pGq “ 1 ,

where the last equality holds because G is simple non-abelian. This is contradiction.
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18 Burnside’s paqb-Theorem
Character theory has many possible applications to the structure of finite groups. We consider in thissection on of the most famous of these: the proof of Burnside’s paqb-theorem.
Example 10To begin with we consider two possible minor applications of character theory to finite groups. Bothare results of the Einfürung in die Algebra, for which you have already seen purely group-theoreticproofs.(a) G finite group such that |G| “ p2 for some prime number p ùñ G is abelian.

¨ Proof using character theory. By Corollary 16.7 we have χp1q | |G| for each χ P IrrpGq.Thus
χp1q P t1, p, p2u .Therefore the degree formula reads

p2 “ |G| “
ÿ

χPIrrpGq

χp1q2 “ 1Gp1q2
loomoon

“1
`

ÿ

χPIrrpGq

χ‰1G

χp1q2 ,

which implies that it is not possible that the degree of an irreducible character of G is
p or p2. In other words, all the irreducible characters of G are linear, and thus G isabelian by Corollary 14.8.(b) G is a non-trivial p-group ùñ G is soluble.[Recall from the Einfürung in die Algebra that a finite group G is soluble if it admits a chainof subgroups 1 “ G0 ă G1 ă . . . ă Gs “ Gsuch that for 1 ď i ď s, Gi´1◁Gi and Gi{Gi´1 is cyclic of prime order. Moreover, we have thefollowing very useful solubility criterion, sometimes coined "the sandwich principle": if H ⊴Gis a normal subgroup, then the group G is soluble if and only if both G and G{H are soluble.]

¨ Proof using character theory. By induction on |G| “: pa (a P Zą0). If |G| “ p or
|G| “ p2, then G is abelian (cyclic in the former case). Finite abelian groups are clearlysoluble because they are products of cyclic groups of prime power order.Therefore, we may assume that |G| ě p3. As in (a) Corollary 16.7 implies that

χp1q P t1, p, p2, . . . , pau for each χ P IrrpGq .

Now, again the degree formula yields
pa “ |G| “ 1 `

ÿ

χPIrrpGq

χ‰1G

χp1q2 .

and for this equality to hold, there must be at least p linear characters of G (includingthe trivial character). Thus it follows from Corollary 14.8 that G1 ň G. Hence both
G1 and G{G1 are soluble by the induction hypothesis ñ G is soluble by the sandwich
principle.
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Theorem 18.1 (Burnside)Let G be a finite non-abelian simple group. If C is a conjugacy class of G such that |C | “ pa with

p prime and a P Zě0, then C “ t1u.
Proof : Assume ab absurdo that C ‰ t1u and choose g P C . In particular g ‰ 1. Since G is non-abeliansimple G “ G1 and it follows from Corollary 14.8 that the unique linear character of G is the trivialcharacter. Hence, for each χ P IrrpGqzt1Gu, either p | χp1q or 1 “ gcdpχp1q, pq “ gcdpχp1q, |C |q, andin the case in which p ∤ χp1q, then χpgq “ 0 by Corollary 17.7. Therefore, the Second OrthogonalityRelations read 0 “ 1 `

ÿ

χPIrrpGq
χ‰1G

χpgq
loomoon

“0 if
p∤χp1q

χp1q
loomoon

“χp1q

“ 1 `
ÿ

χPIrrpGq

p|χp1q

χpgqχp1q

and dividing by p yields
ÿ

χPIrrpGq

p|χp1q

χp1q

p
loomoon

PZ

χpgq
loomoonalgebraicinteger

looooooooooomooooooooooonalgebraic integer

“ ´
1
p P QzZ .

This contradicts the fact that rational numbers which are algebraic integers are integers. It follows that
g “ 1 is the only possibility and hence C “ t1u.

As a consequence, we obtain Burnside’s paqb theorem, which can be found in the literature under twodifferent forms. The first version provides us with a "non-simplicity" criterion and the second versionwith a solubility criterion, which is extremely hard to prove by purely group theoretic methods.
Theorem 18.2 (Burnside’s paqb Theorem, "simple" version)Let p, q be prime numbers and let a, b P Zě0 be integers such that a`b ě 2. If G is a finite groupof order paqb, then G is not simple.
Proof : First assume that a “ 0 or b “ 0. Then G is a q-group with q2 | |G|, resp. a p-group with p2 | |G|.Therefore the centre of G is non-trivial (Algebra I), thus of non-trivial prime power order. Therefore,there exists an element g P Z pGq of order q (resp. p) and 1 ‰ xgy ◁ G is a proper non-trivial normalsubgroup. Hence G is not simple.We may now assume that a ‰ 0 ‰ b. Let Q P SylqpGq be a Sylow q-subgroup of G (i.e. |Q| “ qb).Again, as Q is a q-group, we have Z pQq ‰ t1u and we can choose g P Z pQqzt1u. Then

Q ď CGpgq

and therefore the Orbit-Stabiliser Theorem yields
|rgs| “ |G : CGpgq| “ pr

for some non-negative integer r ď a. If r “ 0, then pr “ 1 and G “ CGpgq, so that g P Z pGq. Hence
Z pGq ‰ t1u and G is not simple by the same argument as above. If pr ą 1, then G cannot be simple byTheorem 18.1.

Theorem 18.3 (Burnside’s paqb Theorem, "soluble" version)Let p, q be prime numbers and a, b P Zě0. Then any finite group of order paqb is soluble.
Proof : Let G be a finite group of order paqb. We proceed by induction on a` b.

¨ a` b P t0, 1u ùñ G is either trivial or cyclic of prime order, hence clearly soluble.
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¨ a ` b ě 2 ùñ G is not simple by the "simple" version of Burnside’s paqb theorem. Hence thereexists a proper non-trivial normal subgroup H in G and both |H|, |G{H| ă paqb. Therefore both Hand G{H are soluble by the induction hypothesis. Thus G is soluble by the sandwich principle.



Chapter 6. Induction and Restriction of Characters

In this chapter we present important methods to construct / relate characters of a group, given charac-ters of subgroups or overgroups. The main idea is that we would like to be able to use the charactertables of groups we know already in order to compute the character tables of subgroups or overgroupsof these groups.
Notation: throughout this chapter, unless otherwise specified, we let:

¨ G denote a finite group, H ď G and N ⊴G, iH : H ÝÑ G, h ÞÑ h is the canonical inclusion of Hin G and πN : G ÝÑ G{N,g ÞÑ gN is the quotient morphism;
¨ K :“ C be the field of complex numbers;
¨ IrrpGq :“ tχ1, . . . , χru denote the set of pairwise distinct irreducible characters of G;
¨ C1 “ rg1s, . . . , Cr “ rgrs denote the conjugacy classes of G, where g1, . . . , gr is a fixed set ofrepresentatives; and
¨ we use the convention that χ1 “ 1G and g1 “ 1 P G.In general, unless otherwise stated, all groups considered are assumed to be finite and all C-vectorspaces / modules over the group algebra considered are assumed to be finite-dimensional.

19 Induction and Restriction
We aim at inducing and restricting characters from subgroups, resp. overgroups. We start with theoperation of induction, which is a subtle operation to construct a class function on G from a given classfunction on a subgroup H ď G. We will focus on characters in a second step.
Definition 19.1 (Induced class function)Let H ď G and φ P ClpHq be a class function on H . Then the induction of φ from H to G isIndGHpφq “: φÒGH : G ÝÑ C

g ÞÑ φÒGH pgq :“ 1
|H|

ř

xPG φ˝pxgx´1q ,

where for y P G, φ˝pyq :“ #

φpyq if y P H,0 if y R H.

56
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Remark 19.2With the notation of Definition 19.1 the following holds:

(a)
φÒGH pgq “

1
|H|

ÿ

xPG
φ˝pxgx´1q “

1
|H|

ÿ

xPG
xgx´1PH

φpxgx´1q ;
(b) the function φÒGH is a class function on G, because for every g, y P G,

φÒGH pygy´1q “
1

|H|

ÿ

xPG
φ˝pxygy´1x´1q

s:“yx
“

1
|H|

ÿ

sPG
φ˝psgs´1q “ φÒGH pgq .

In contrast, the operation of restriction is based on the more elementary idea that any map can be re-stricted to a subset of its domain. For class functions / representations / characters we are essentiallyinterested in restricting these (seen as maps) to subgroups.
Definition 19.3 (Restricted class function)Let H ď G and ψ P ClpGq be a class function on G. Then the restriction of ψ from G to H is

ResGHpψq :“ ψ ÓGH :“ ψ|H “ ψ ˝ iH .

This is obviously again a class function on H .
Remark 19.4If ψ is a character of G afforded by the C-representation ρ : G ÝÑ GLpV q, then clearly ψ ÓGH is thecharacter afforded by the C-representation ResGHpρq :“ ρ ÓGH :“ ρ|H “ ρ ˝ iH : H ÝÑ GLpV q. SeeExercise 9.10(i).
Exercise 19.5Let H ď J ď G and let g P G. Prove the following assertions:

(a) φ P ClpHq ùñ φÒGH pgq “
ř

HxPHzG
Hx“Hxg

φpxgx´1q ;
(b) φ P ClpHq ùñ pφÒJHqÒGJ “ φÒGH (transitivity of induction);
(c) ψ P ClpGq ùñ pψ ÓGJ qÓJH“ ψ ÓGH (transitivity of restriction);
(d) the maps

IndGH : ClpHq ÝÑ ClpGq, φ ÞÑ φÒGH and ResGH : ClpGq ÝÑ ClpHq, ψ ÞÑ ψ ÓGHare C-linear;
(e) φ P ClpHq and ψ P ClpGq ùñ ψ ¨ φÒGH“

`

ψ ÓGH ¨φ
˘

ÒGH (Frobenius formula).
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Theorem 19.6 (Frobenius reciprocity)Let H ď G, let φ P ClpHq be a class function on H , and let ψ P ClpGq be a class function on G.Then,

xφÒGH , ψyG “ xφ, ψ ÓGHyH and xψ, φÒGHyG “ xψ ÓGH , φyH .

Note: If φ and ψ are characters, then clearly all four numbers are equal.
Proof : Since x´,´yG and x´,´yH are hermitian forms, the 1st equality holds if and only if the 2nd equalityholds. Hence, it suffices to prove the second one. By the definitions of the scalar products and of theinduction, a direct computation yields:

xψ, φÒGHyG “
1

|G|

ÿ

gPG
ψpgqφÒGH pgq “

1
|G|

ÿ

gPG
ψpgq

1
|H|

ÿ

xPG
φ˝pxgx´1q

“
1

|G| ¨ |H|

ÿ

gPG

ÿ

xPG
xgx´1PH

ψpxgx´1qφpxgx´1q

“
1

|H|

ÿ

sPH
ψ ÓGH psqφpsq

“ xψ ÓGH , φyH ,where the third equality comes from the fact that ψ is a class function on G, and for the fourth equalitywe set s :“ xgx´1.
Corollary 19.7Let H ď G and let χ be a character of H of degree n. Then the induced class function χ ÒGH is acharacter of G of degree n ¨ |G : H|.
Proof : Given ψ P IrrpGq by Frobenius reciprocity we can set

mψ :“ xχ ÒGH , ψyG “ xχ, ψ ÓGHyH P Zě0 ,
which is an integer because both χ and ψ ÓGH are characters of H . Therefore,

χ ÒGH “
ÿ

ψPIrrpGq

mψψ

is a non-negative integral linear combination of irreducible characters of G, hence a character of G.Moreover,
χ ÒGH p1q “

1
|H|

ÿ

xPG
χ˝p1q “

1
|H|

|G|χp1q “ χp1q|G : H| .

Remark 19.8We conclude from Exercise 19.5(d) and Corollary 9.8, that the induction and the restriction of avirtual character is again a virtual character. In other words, if H ď G, then:
(a) φ P Z IrrpHq ùñ φÒGH P Z IrrpGq ; and
(b) ψ P Z IrrpGq ùñ ψ ÓGH P Z IrrpHq .
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Example 11(a) The restriction of the trivial character of G from G to H is obviously the trivial character of H .

(b) If H “ t1u, then 1t1u ÒG
t1u

“ χreg . Indeed, if g P G then, it follows from Corollary 10.2 that
1t1u ÒGt1u pgq “

1
|t1u|

ÿ

xPG
1˝

t1upx´1gxq
loooooomoooooon

“0 unless g“1
“ δ1g|G| “ χregpgq .

(c) Let G “ S3, H “ xp1 2qy, and let φ : H Ñ C with φpIdq “ 1, φpp1 2qq “ ´1 be the signhomomorphism on H . By the remark, it is enough to compute φ ÒGH on representatives of theconjugacy classes of S3, e.g. Id, p1 2q and p1 2 3q:
φÒGH pIdq “

12 ÿ

xPS3
φ˝pIdq “

12 ¨ |S3| ¨ 1 “ 3 ,
φÒGH pp1 2 3qq “

12 ÿ

xPS3
φ˝px´1p1 2 3qxq “

12 ÿ

xPS3
0 “ 0 ,

(as the conjugacy class of a 3-cycle contains only 3-cycles and φp3-cycleq “ 0)
φÒGH pp1 2qq “

12 ÿ

xPS3
φ˝px´1p1 2qxq “

12 p2φ˝pp1 2qq ` 2φ˝pp1 3qq ` 2φ˝pp2 3qqq “ ´1 .
Moreover we see from the character table of S3 (Example 5) that φÒGH“ χ2 ` χ3. But we canalso compute with Frobenius reciprocity, that

0 “ xφ, χ1 ÓGHyH “ xφÒGH , χ1yGand similarly
1 “ xφ, χ2 ÓGHyH “ xφÒGH , χ2yG and 1 “ xφ, χ3 ÓGHyH “ xφÒGH , χ3yG .

Example 12 (The character table of the alternating group A5)The conjugacy classes of G “ A5 are
C1 “ tIdu , C2 “ rp1 2qp3 4qs , C3 “ rp1 2 3qs , C4 Y C5 “ t5-cyclesu ,i.e. g1 “ Id, g2 “ p1 2qp3 4q, g3 “ p1 2 3q and g P C4 ñ opgq “ 5 and g´1 P C4 but g2, g3 P C5 sothat we can choose g4 :“ p1 2 3 4 5q and g5 :“ p1 3 5 2 4q. This yields:

| IrrpA5q| “ 5 and |C1| “ 1, |C2| “ 15, |C3| “ 20, |C4| “ |C5| “ 12 .We obtain the character table of A5 as follows:
¨ We know that the trivial character 1G “ χ1 is one of the irreducible characters, hence weneed to determine IrrpA5qzt1Gu “ tχ2, χ3, χ4, χ5u.
¨ Now, H :“ A4 ď A5 and we have already computed the character table of A4 in ExerciseSheet 5. Therefore, inducing the trivial character of A4 from A4 to A5 we obtain that
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1HÒGH pIdq “ 1 ¨ |G : H| “ 5 (see Cor. 19.7)
1HÒGH

`

p1 2qp3 4q
˘

“ 112 ¨ 12 “ 1
1HÒGH

`

p1 2 3q
˘

“ 112 ¨ 24 “ 2
1HÒGH p5-cycleq “ 112 ¨ 0 “ 0

Now, by Frobenius reciprocity
x1HÒGH , χ1yG “ x1H , χ1 ÓGH

loomoon

“1H

yH “ 1 .
It follows (check it) that x1HÒGH ´χ1,1HÒGH ´χ1yG “ 1, so 1HÒGH ´χ1 is an irreducible charac-ter, say χ4 :“ 1HÒGH ´χ1. The values of χ4 are given by p4, 0, 1,´1,´1q on C1, C2, C3, C4, C5respectively.

¨ Next, as A5 is a non-abelian simple group, we have A5{rA5, A5s “ 1, and hence the trivialcharacter is the unique linear character of A5 and χ2p1q, χ3p1q, χ5p1q ě 3. (You have alsoproved in Exercise 19, Sheet 6 that simple groups do not have irreducible characters ofdegree 2.) Then the degree formula yields
χ2p1q2 ` χ3p1q2 ` χ5p1q2 “ |A5| ´ χ1p1q2 ´ χ4p1q2 “ 60 ´ 1 ´ 16 “ 43 .

As degrees of characters must divide the group order, it follows from this formula that
χ2p1q, χ3p1q, χ5p1q P t3, 4, 5, 6u, but then also that it is not possible to have an irreduciblecharacter of degree 6. From this we easily see that only possibility, up to relabelling, is
χ2p1q “ χ3p1q “ 3 and χ5p1q “ 5. Hence at this stage, we already have the following part ofthe character table:

C1 C2 C3 C4 C5
|Ck | 1 15 20 12 12

|CGpgkq| 60 4 3 5 5
χ1 1 1 1 1 1
χ2 3 . . . .
χ3 3 . . . .
χ4 4 0 1 ´1 ´1
χ5 5 . . . .

¨ Next, we have that
gcdpχ2p1q, |C3|q “ gcdpχ3p1q, |C3|q “ gcdpχ5p1q, |C4|q “ gcdpχ5p1q, |C5|q “ 1 ,

so that the corresponding character values must all be zero by Corollary 17.7 and we get:
C1 C2 C3 C4 C5

|Ck | 1 15 20 12 12
|CGpgkq| 60 4 3 5 5

χ1 1 1 1 1 1
χ2 3 . 0 . .
χ3 3 . 0 . .
χ4 4 0 1 ´1 ´1
χ5 5 . . 0 0



Skript zur Vorlesung: Darstellungstheorie WS 24/25, Leibniz Universität Hannover 61
¨ Applying the Orthogonality Relations yields:1st, 3rd column ñ χ5pg3q “ ´1 and the scalar product xχ1, χ5yG “ 0 ñ χ5pg2q “ 1.
¨ Finally, to fill out the remaining gaps, we can induce from the cyclic subgroup Z5 :“

xp1 2 3 4 5qy ď A5. Indeed, choosing the non-trivial irreducible character ψ of Z5 whichwas denoted "χ3" in Example 4 gives
ψ ÒGZ5“ p12, 0, 0, ζ2 ` ζ3, ζ ` ζ4q

where ζ “ expp2πi{5q is a primitive 5-th root of unity. Then we compute that
xψ ÒGZ5 , χ4yG “ 1 “ xψ ÒGZ5 , χ5yG ùñ ψ ÒGZ5 ´χ4 ´ χ5 “ p3,´1, 0,´ζ ´ ζ4,´ζ2 ´ ζ3q

and this character must be irreducible, because it is not the sum of 3 copies of the trivialcharacter. Hence we set χ2 :“ ψ ÒGZ5 ´χ4 ´ χ5 and the values of χ3 then easily follow fromthe 2nd Othogonality Relations:
C1 C2 C3 C4 C5

|Ck | 1 15 20 12 12
|CGpgkq| 60 4 3 5 5

χ1 1 1 1 1 1
χ2 3 ´1 0 ´ζ ´ ζ4 ´ζ2 ´ ζ3
χ3 3 ´1 0 ´ζ2 ´ ζ3 ´ζ ´ ζ4
χ4 4 0 1 ´1 ´1
χ5 5 1 ´1 0 0

Remark 19.9 (Induction of CH-modules)At the level of CG-modules induction is just a praticular case of a so-called extension of scalarsfrom CH to CG. More precisely, if M is a CH-module, then the induction of M from H to G isdefined to be CG bCH M . Moreover, if M affords the character χ , then CG bCH M affords thecharacter χ ÒGH .
20 Clifford Theory
Clifford theory is a generic term for a series of results relating the representation / character theory ofa given group G to that of a normal subgroup N ⊴ G through induction and restriction.
Notation 20.1Let H ď G and let x P G.(1) We let

cx : H ÝÑ xHx´1
h ÞÑ xhx´1

denote the conjugation homomorphism by x .



Skript zur Vorlesung: Darstellungstheorie WS 24/25, Leibniz Universität Hannover 62
(2) We write x P rG{Hs to mean that x P G is a representative of the element xH in G{H . In asum, writing ř

xPrG{Hs means that the sum runs over a full set of representatives for the leftcosets in G{H . This is the same as writing ř

xHPG{H .
Definition 20.2 (Conjugate class function / inertia group)Let H ď G, let φ P ClpHq, let g P G and let cg´1 : gHg´1 ÝÑ H denote the conjugationhomomorphism by g´1. We define:

(a) the conjugate class function to φ by g to be gφ :“ φ ˝ cg´1 P ClpgHg´1q, i.e. the classfunction on gHg´1 given by
gφ : gHg´1 ÝÑ C, x ÞÑ φpg´1xgq ;

and
(b) the inertia group of φ in G to be IGpφq :“ tg P G | gφ “ φu.

Exercise 20.3Let g, h P G. With the notation of Definition 20.2, prove that:
(a) gφ is indeed a class function on gHg´1;
(b) IGpφq ď G and H ď IGpφq ď NGpHq;
(c) gφ “ hφ ô h´1g P IGpφq ô gIGpφq “ hIGpφq;
(d) if ρ : H ÝÑ GLpV q is a C-representation of H with character χ , then

gρ :“ ρ ˝ cg´1 : gHg´1 ÝÑ GLpV q, x ÞÑ ρpg´1xgq

is C-representation of gHg´1 with character gχ “ χ ˝ cg´1 and gχp1q “ χp1q;
(e) if J ď H then gpφÓHJ q “ p gφqÓ

gHg´1
gJg´1 .

Exercise 20.4 (Mackey Formula)Let H, L ď G and let φ P ClpHq. Prove that
pφÒGHqÓGL “

ÿ

LgH P LzG{H
p gφqÓ

gHg´1
gHg´1XLÒ

L
gHg´1XL .

Exercise 20.5Deduce from the Mackey formula that if N ⊴ G, and ψ P IrrpNq, then
xψ ÒGN , ψ ÒGNyG “

ÿ

xNPG{N
xψ, xψyN .
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Lemma 20.6

(a) If H ď G, φ, ψ P ClpHq and g P G, then x gφ, gψygHg´1 “ xφ, ψyH .
(b) If N ⊴ G and g P G, then we have ψ P IrrpNq ô gψ P IrrpNq.
(c) If N ⊴ G and ψ is a character of N , then pψ ÒGNqÓGN“ |IGpψq : N|

ř

gPrG{IGpψqs
gψ.

Proof : (a) Clearly
x gφ, gψygHg´1 “

1
|gHg´1|

ÿ

xPgHg´1
gφpxq gψpxq

“
1

|H|

ÿ

xPgHg´1 φpg´1xgqψpg´1xgq

y :“ g´1xg
“

1
|H|

ÿ

yPH
φpyqψpyq “ xφ, ψyH .

(b) As N ⊴ G, gNg´1 “ N . Thus, if ψ P IrrpNq, then on the one hand gψ is also a character of
N by Exercise 20.3(d), and on the other hand it follows from (a) that x gψ, gψyN “ xψ,ψyN “ 1.Hence gψ is an irreducible character of N . Therefore, if gψ P IrrpNq, then ψ “ g´1

p gψq P IrrpNq,as required.(c) If n P N then so does g´1ng @ g P G, hence
ψ ÒGNÓGN pnq “ ψ ÒGN pnq “

1
|N|

ÿ

gPG
ψpg´1ngq “

1
|N|

ÿ

gPG

gψpnq “
|IGpψq|

|N|

ÿ

gPrG{IGpψqs

gψpnq.

Notation 20.7Given N ⊴ G and ψ P IrrpNq, we set IrrpG | ψq :“ tχ P IrrpGq | xχ ÓGN , ψyN ‰ 0u.
Theorem 20.8 (Clifford Theory)Let N ⊴ G. Let χ P IrrpGq, ψ P IrrpNq and set I :“ IGpψq. Then the following assertions hold.(a) If ψ is a constituent of χ ÓGN , then

χ ÓGN“ e

¨

˝

ÿ

gIGpψqPG{IGpψq

gψ

˛

‚ ,

where e “ xχ ÓGN , ψyN “ xχ, ψ ÒGNyG P Zą0 is called the ramification index of χ in N (or of
ψ in G). In particular, all the constituents of χ ÓGN have the same degree.(b) Induction from I “ IGpψq to G induces a bijection

IndGI : IrrpI | ψq ÝÑ IrrpG | ψq

η ÞÑ ηÒGI

preserving ramification indices, i.e. xηÓI
N , ψyN “ xηÒGIÓI

N , ψyN “ e.
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Proof : (a) By Frobenius reciprocity, xχ, ψ ÒGNyG “ xχ ÓGN , ψyN ‰ 0. Thus χ is a constituent of ψ ÒGN andtherefore χ ÓGN is a constituent of ψ ÒGNÓGN .Now, if η P IrrpNq is an arbitrary constituent of χ ÓGN (i.e. xχ ÓGN , ηyN ‰ 0) then by the above, wehave

xψ ÒGNÓGN , ηyN ě xχ ÓGN , ηyN ą 0 .Moroever, by Lemma 20.6(c) the constituents of ψ ÒGNÓGN are preciely t gψ | g P rG{IGpψqsu. Hence
η is G-conjugate to ψ. Furthermore, for every g P G we have

xχ ÓGN , gψyN “
1

|N|

ÿ

hPN
χphqgψph´1q “

1
|N|

ÿ

hPN
χphqψpg´1h´1gq

χPClpGq
“

1
|N|

ÿ

hPN
χpg´1hgqψpg´1h´1gq

s:“g´1hgPN
“

1
|N|

ÿ

sPN
χpsqψps´1q “ xχ ÓGN , ψyN “ e .

Therefore, every G-conjugate gψ (g P rG{IGpψqs) of ψ occurs as a constituent of χ ÓGN with thesame multiplicity e. The claim about the degrees is then clear as gψp1q “ ψp1q @g P G.(b) Claim 1: η P IrrpI | ψq ñ ηÒGI P IrrpG|ψq.Since I “ IIpψq, (a) implies that ηÓI
N“ e1ψ with e1 “ xηÓI

N , ψyN “
ηp1q

ψp1q
ą 0. Now, let χ P IrrpGqbe a constituent of ηÒGI . By Frobenius Reciprocity we have0 ‰ xχ, ηÒGI yG “ xχ ÓGI , ηyI .It follows that ηÓI

N is a constituent of χ ÓGIÓI
N and

e :“ xχ ÓGN , ψyN “ xχ ÓGIÓI
N , ψyN ě xηÓI

N , ψyN “ e1 ą 0 ,hence χ P IrrpG|ψq. Moreover, by (a) we have e “ xχ ÓGN , gψyN ě e1 for each g P G. Therefore,
χp1q“e

ÿ

gPrG{Is

gψp1q
paq
“ e|G : I |ψp1q ě e1|G : I |ψp1q “ |G : I |ηp1q “ ηÒGI p1q ě χp1q .

Thus e “ e1, ηÒGI “ χ P IrrpGq, and therefore ηÒGI P IrrpG|ψq.
Claim 2: χ P IrrpG | ψq ñ D! η P IrrpI | ψq such that xχ ÓGI , ηyI ‰ 0.Again by (a), as χ P IrrpG | ψq, we have χ ÓGN“ e

ř

gPrG{Is
gψ, where e “ xχ ÓGN , ψyN P Zą0.Therefore, there exists η P IrrpIq such that

xχ ÓGI , ηyI ‰ 0 ‰ xηÓI
N , ψyNbecause χ ÓGN“ χ ÓGIÓI

N , so in particular η P IrrpI | ψq. Hence existence holds and it remains to seethat uniqueness holds. Again by Frobenius reciprocity we have 0 ‰ xχ, η ÒGI yG . By Claim 1 thisforces χ “ ηÒGI and ηÓI
N“ eψ, so e is also the ramification index of ψ in I .Now, write χ ÓGI “

ř

λPIrrpIq aλ λ “
ř

λ‰η aλλ ` aηη with aλ ě 0 for each λ P IrrpIq and aη ą 0. Itfollows that
paη ´ 1qηÓI

N `
ÿ

λ‰η
aλλÓI

N“ χ ÓGN
loomoon

“e
ř

gPrG{Is
gψ

´ ηÓI
N

loomoon

“eψ

“ e
ÿ

gPrG{Iszr1s

gψ.

Since ψ does not occur in this sum, but occurs in ηÓI
N , the only possibility is aη “ 1 and λ R IrrpI |ψqfor λ ‰ η. Thus η is uniquely determined as the only constituent of χ ÓGI in IrrpI | ψq.Finally, Claims 1 and 2 prove that IndGI : IrrpI | ψq ÝÑ IrrpG | ψq, η ÞÑ η ÒGI is well-defined andbijective, and the proof of Claim 2 shows that the ramification indices are preserved.
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Example 13 (Normal subgroups of index 2)Let N ă G be a subgroup of index |G : N| “ 2 (ñ N ◁ G) and let χ P IrrpGq, then either

(1) χ ÓGN P IrrpNq, or
(2) χ ÓGN“ ψ ` gψ for a ψ P IrrpNq and a g P GzN .

Indeed, let ψ P IrrpNq be a constituent of χ ÓGN . Since |G : N| “ 2, we have IGpψq P tN,Gu.Theorem 20.8 yields the following:
¨ If IGpψq “ N then IrrpIGpψq | ψq “ tψu and ψ ÒGN“ χ , so that e “ 1 and we get χ ÓGN“ ψ`gψfor any g P GzN .
¨ If IGpψq “ G then G{IGpψq “ t1u, so that

χ ÓGN“ eψ with e “ xχ ÓGN , ψyN “ xχ, ψ ÒGNyG .Moroever, by Lemma 20.6(c),
ψ ÒGNÓGN“ |IGpψq : N|

ÿ

gPrG{IGpψqs

gψ “ 2ψ .
Hence 2ψp1q “ ψ ÒGNÓGN p1q ě χ ÓGN p1q “ χp1q “ eψp1q ñ e ď 2 .Were e “ 2 then we would have 2ψp1q “ ψ ÒGN p1q, hence χ “ ψ ÒGN and thus

1 “ xχ, ψ ÒGNyG “ xχ ÓGN , ψyN “ e “ 2
a contradiction. Whence e “ 1, which implies that χ ÓGN P IrrpNq. Moreover, ψ ÒGN“ χ `χ 1 forsome χ 1 P IrrpGq such that χ 1 ‰ χ .

Remember that we have proved that the degree of an irreducible character of a finite group G dividesthe index of the centre |G : Z pGq|. The following consequence of Clifford’s theorem due to N. Itôprovides us with yet a stronger divisibility criterion.
Theorem 20.9 (Itô)Let A ď G be an abelian subgroup of G and let χ P IrrpGq. Then the following assertions hold:

(a) χp1q ď |G : A|; and
(b) if A⊴ G, then χp1q

ˇ

ˇ |G : A|.
Proof : (a) Exercise!(b) Let ψ P IrrpAq be a constituent of χ ÓGA , so that in other words χ P IrrpG | ψq. By Theorem 20.8(b)there exists η P IrrpIGpψq | ψq such that χ “ η ÒGIGpψq

and η Ó
IGpψq

A “ eψ (proof of Claim 2). Now,as A is abelian, all the irreducible characters of A have degree 1 and for each x P A, ψpxq is an
opxq-th root of unity. Hence @ x P A we have

|ηpxq| “ |ηÓ
IGpψq

A pxq| “ |eψpxq| “ e|ψpxq| “ e ¨ 1 “ e “ ηp1q ñ A Ď Z pηq .



Skript zur Vorlesung: Darstellungstheorie WS 24/25, Leibniz Universität Hannover 66
Therefore, by Remark 17.5, we have

ηp1q

ˇ

ˇ

ˇ
|IGpψq : Z pηq|

ˇ

ˇ

ˇ
|IGpψq : A|

and since χ “ ηÒGIGpψq
it follows that

χp1q “ |G : IGpψq|ηp1q

ˇ

ˇ

ˇ
|G : IGpψq| ¨ |IGpψq : A| “ |G : A| .

21 The Theorem of Gallagher
In the context of Clifford theory (Theorem 20.8) we understand that irreducibility of characters is pre-served by induction from IGpψq to G. Thus we need to understand induction of characters from N to
IGpψq, in particular what if G “ IGpψq. What can be said about IrrpG | ψq?
Lemma 21.1Let N ⊴ G and let ψ P IrrpNq such that IGpψq “ G. Then

ψ ÒGN“
ÿ

χPIrrpGq

eχ χ

where eχ :“ xχ ÓGN , ψyN “
χp1q

ψp1q
is the ramification index of χ in N; in particular

ÿ

χPIrrpGq

e2
χ “ |G : N| .

Proof : Write ψ ÒGN“
ř

χPIrrpGq aχ χ with suitable aχ “ xχ, ψ ÒGNyG . By Frobenius reciprocity, aχ ‰ 0 if andonly if χ P IrrpG | ψq. But by Theorem 20.8: if χ P IrrpG|ψq, then χ ÓGN“ eχψ, so
eχ “ xχ ÓGN , ψyN “ xχ, ψ ÒGNyG “ aχ and also eχ “

χp1q

ψp1q
.

Therefore,
|G : N|ψp1q “ ψ ÒGN p1q “

ÿ

χPIrrpGq

aχ χp1q “
ÿ

χPIrrpGq

eχ χp1q “
ÿ

χPIrrpGq

e2
χ ψp1q “ ψp1q

ÿ

χPIrrpGq

e2
χ

and it follows that |G : N| “
ř

χPIrrpGq e2
χ .

Therefore the multiplicities teχuχPIrrpGq behave like the irreducible character degrees of the factor group
G{N . This is not a coincidence in many cases.
Definition 21.2 (Extension of a character )Let N ⊴ G and χ P IrrpGq such that ψ :“ χ ÓGN is irreducible. Then we say that ψ extends to G,and χ is an extension of ψ.
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Exercise 21.3Let N ⊴ G and χ P IrrpGq. Prove that

χ ÓGNÒGN“ InfGG{Npχregq ¨ χ ,

where χreg is the regular character of G{N .
Theorem 21.4 (Gallagher)Let N ⊴ G and let χ P IrrpGq such that ψ :“ χ ÓGN P IrrpNq. Then

ψ ÒGN“
ÿ

λPIrrpG{Nq

λp1q InfGG{Npλq ¨ χ,

where the characters tInfGG{Npλq ¨ χ | λ P IrrpG{Nqu of G are pairwise distinct and irreducible.
Proof : By Exercise 21.3 we have ψ ÒGN“ InfGG{Npχregq ¨ χ , where χreg denotes the regular character of G{N .Recall that by Theorem 10.3, χreg “

ř

λPIrrpG{Nq λp1q λ, so that we have
ψ ÒGN“

ÿ

λPIrrpG{Nq

λp1q InfGG{Npλq ¨ χ .

Now, by Lemma 21.1, we have
|G : N| “

ÿ

χPIrrpGq

e2
χ “ xψ ÒGN , ψ ÒGNyG “

ÿ

λ,µPIrrpG{Nq

λp1qµp1qxInfGG{Npλq ¨ χ, InfGG{Npµq ¨ χyG

ě
ÿ

λPIrrpG{Nq

λp1q2 “ |G : N| .

Hence equality holds throughout. This proves that
xInfGG{Npλq ¨ χ, InfGG{Npµq ¨ χy “ δλµ.

By Erercise 13.4, InfGG{Npλq ¨χ are characters of G and hence the characters tInfGG{Npλq ¨χ | λ P IrrpG{Nquare irreducible and pairwise distinct, as claimed.
Therefore, given ψ P IrrpNq which extends to χ P IrrpGq, we get InfGG{Npλq ¨ χ (λ P IrrpG{Nq) as furtherirreducible characters.
Example 14Let N ă G with |G : N| “ 2 (ñ N ⊴ G) and let ψ P IrrpNq. We saw:

¨ if IGpψq “ N then ψ ÒGNP IrrpGq;
¨ if IGpψq “ G then ψ extends to some χ P IrrpGq and ψG “ χ ` χ 1 with χ 1 P IrrpGqztχu. Itfollows that χ 1 “ χ ¨ sign, where sign is the inflation of the sign character of G{N – S2 to G.



Chapter 7. Frobenius Groups

In this chapter we show how to understand the irreducible characters of an important class of finitegroups: the Frobenius groups. After Burnside’s paqb-Theorem this provides us with a second funda-mental application of character theory to the structure theory of finite groups.
Notation: throughout this chapter, unless otherwise specified, we let:

¨ G denote a finite group in multiplicative notation with neutral element 1 :“ 1G ;
¨ K :“ C be the field of complex numbers.

In general, unless otherwise stated, all groups considered are assumed to be finite and all C-vectorspaces / modules over the group algebra considered are assumed to be finite-dimensional.

22 Frobenius Group / Frobenius Complement / Frobenius Kernel

Definition 22.1 (Frobenius group / Frobenius complement)A finite group G admitting a non-trivial proper subgroup H such that
H X gH “ t1u @g P GzH

is called a Frobenius group with Frobenius complement H or a Frobenius group with respect
to H .

Note: The definition implies immediately that NGpHq “ H . Also, a Frobenius complement need not beunique.
Example 15Assume P P SylppGq is such that |P| “ p and NGpPq “ P ă G. (In words: P is cyclic of order pand self-normalising!) Then, clearly, P X gP “ t1u for any g P GzP “ GzNGpPq, and so G is aFrobenius group with Frobenius complement P .

This yields immediately that the following well-known groups are Frobenius groups:
68
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(1) the symmetric group S3 is a Frobenius group with Frobenius complement xp1 2qy ;
(2) the dihedral group

D2p2m`1q “ xa, b | a2m`1 “ b2 “ pabq2 “ 1yof order 2p2m` 1q with m P Zě1 is a Frobenius group with Frobenius complement xby ;
(3) the alternating group A4 is a Frobenius group with Frobenius complement xp1 2 3qy ;
(4) non-abelian groups of order p ¨ q with 3 ď p ă q are Frobenius groups with Frobeniuscomplement given by a Sylow p-subgroup of G.

Theorem 22.2 (Frobenius)If G is a Frobenius group with Frobenius complement H , then there exists a normal subgroup N⊴Gsuch that G “ HN and HXN “ t1u. Moreover, such an N is uniquely determined, and it is calledthe Frobenius kernel.We see below that the normal subgroup N is easily defined as a set and proved to be unique with therequired properties; the crux of the difficulty lies in proving that it is a subgroup of G. This requirescharacter theoretical arguments!
Proof : Define N :“ `

G z
Ť

gPG
gH

˘

Y t1u.
Claim 1: H XN “ t1u and |N| “ |G : H| .Indeed, from the definition of N we have H XN “ t1u and from the definition of Frobenius complement,
H “ NGpHq, so there are exactly |G : NGpHq| “ |G : H| distinct conjugates gH of H because if g, x P Gthen we have:

gH “ xH ô x´1g P NGpHq “ H ô gH “ xH .Moreover, these have only the identity element in common, because if g, x P G are such that gH ‰ xH ,then x´1g R NGpHq “ H , so by the definition of the Frobenius complement,
t1u “ x´1gH XH “ x´1

p gH X xHq ,

proving that gH X xH “ t1u. It now follows that
ˇ

ˇ

ˇ

ď

gPG

gH
ˇ

ˇ

ˇ
“ |G : H| ¨ p|H| ´ 1q ` 1 “ |G| ´ |G : H| ` 1 .

It follows that
|N| “ |G| ´

ˇ

ˇ

ˇ

ď

gPG

gH
ˇ

ˇ

ˇ
` 1 “ |G| ´ |G| ` |G : H| ´ 1 ` 1 “ |G : H| .

Claim 2: if G contains a normal subgroup rN such that rNH “ G and rN XH “ t1Gu, then rN “ N .(Be careful! At this stage, this does not mean that such an rN exists!)Indeed, since rN XH “ t1Gu and rN ⊴ G, certainly
rN X gH “ g

rN X gH “ gprN XHq “ gt1u “ t1u

for any g P G, whence rN Ď N by the definition of N . Moreover, the 2nd Isomorphism Theorem impliesthat |rN| “ |G : H| “ |N|, where the 2nd equality holds by Claim 1, proving that rN “ N .
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Claim 3: if θ P ClpHq is such that θp1Hq “ 0, then θ ÒGHÓGH“ θ .To begin with, the values of the two class functions θ ÒGHÓGH and θ at 1 coincide since by Corollary 19.7we have θ ÒGHÓGH p1q “ |G : H| ¨ θp1q “ 0 . Now, let h P Hzt1u. Then, given x P G, θ˝pxhx´1q ‰ 0 only if
xh ‰ 1 and xh P H X xH , so x P H . Moreover, as θ is a class function, we get

θ ÒGH phq “
1

|H|

ÿ

xPG
θ˝pxhx´1q “

1
|H|

ÿ

xPH
θphq “ θphq ,

as required.
Claim 4: IndGH : tθ P ClpHq | θp1q “ 0u ÝÑ ClpGq, θ ÞÑ θ ÒGH is an isometry with respect to the scalarproducts x´,´yH and x´,´yG .Indeed, let θ, η P ClpHq be such that θp1Hq “ 0 “ ηp1q. Then Frobenius Reciprocity and Claim 3 yield

xθ ÒGH , ηÒGHyG “ xθ ÒGHÓGH , ηyH “ xθ, ηyH ,as desired.
Claim 5: If η P IrrpHqu and θ :“ η ´ ηp1q1H , then η˚ :“ θ ÒGH `ηp1q1G is an irreducible character of G.Clearly, θ P ZIrrpHq Ď ClpHq, θp1q “ 0, and η˚ P ZIrrpGq Ď ClpGq (see Remark 19.8). Now, on the onehand by Claim 4, we have

xθ ÒGH , θ ÒGHyG “ xθ, θyH “ xη, ηyH ` ηp1q2 .
On the other hand, by Frobenius reciprocity, xθ ÒGH ,1GyG “ xθ,1HyH “ ´ηp1q, hence the above togetherwith the fact that θ ÒGH is a virtual character (by Remark 19.8) implies that

xη˚, η˚yG “ xθ ÒGH `ηp1q1G , θ ÒGH `ηp1q1GyG

“ xθ ÒGH , θ ÒGHyG ` 2ηp1qxθ ÒGH ,1GyG ` ηp1q2x1G ,1GyG

“ xη, ηyH ` ηp1q2 ` 2ηp1q ¨ p´ηp1qq ` ηp1q2
“ xη, ηyH “ 1

As η˚ is a virtual character, it now follows that ˘η˚ P IrrpGq. However,
η˚p1q “ θ ÒGH p1q ` ηp1q1Gp1q “ 0 ` ηp1q ¨ 1 “ ηp1q ą 1 ,

whence η˚ P IrrpGq.
The next claim eventually proves that N is a normal subgroup of G.
Claim 6: N “

Ş

ηPIrrpHq kerpη˚q.By Claim 5 ,
M :“ č

ηPIrrpHq

kerpη˚q

defines a normal subgroup of G. First we claim that M ď N . Observe that Claim 3 implies that for any
η P IrrpHq,

η˚ ÓGH “ θ ÒGHÓGH `ηp1q1G ÓGH “ θ ` ηp1q1H “ η .Thus, if h P M XH , then for all η P IrrpHq, we have
η˚p1q “ η˚phq “ ηphq.

It follows that ηphq “ ηp1q for all η P IrrpHq, and so
M XH ď

č

ηPIrrpHq

kerpηq “ t1u
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where the last equality holds by Exercise 14.7. This proves that MXH “ t1u, whence also MX xH “ t1ufor each x P G since M ⊴H . Therefore M ď N , and it remains to prove that N ď M . So, let g P Nzt1u.Then, by the definition of N , for every x P G, we have g R xH . Hence, by definition of induced characters,
θ ÒGH pgq “ 0 for each θ as defined in Claim 5, and so η˚pgq “ η˚p1q for each η P IrrpHqzt1Hu. It followsthat g P kerpη˚q for each η P IrrpHq, proving that g P M . This proves Claim 6.The statement of the theorem now follows from Claim 6, Claim 1 and Claim 2.

Remark 22.3

(a) To use standard group theory terminology, the theorem says that the Frobenius kernel is a
normal complement of H in G and that G is an internal semi-direct product of N by H .

(b) There is no known proof of Frobenius’ theorem which does not make use of character theory.
(c) Thompson proved that the Frobenius kernel N of a Frobenius group is always a nilpotentgroup (i.e. N is the direct product of its Sylow subgroups).

Exercise 22.4

(a) Find two non-isomorphic finite groups which are Frobenius groups and not isomorphic to anyof the Frobenius groups given in Example 15.
(b) Find two infinite families of non-abelian finite groups which are not Frobenius groups.

Justify your answers with proofs.

23 Characters of Frobenius groups
We now construct the whole character table of an arbitrary Frobenius group.
Theorem 23.1 (Brauer’s Permutation Lemma)Let A,B be finite groups, and assume that A acts on both IrrpBq and CpBq via left actions

A ˆ IrrpBq Ñ IrrpBq, pa, χq ÞÑ a.χ,
A ˆ CpBq Ñ CpBq, pa, Cq ÞÑ a.C,

such that pa.χqpa.cq “ χpcq for each a P A, each c P C and each C P CpBq. Then
| FixIrrpBqpaq| “ |tχ P IrrpBq | a.χ “ χu| “ |tC P CpBq | a.C “ Cu| “ | FixCpBqpaq|

for every a P A. (In other words, the permutation representations induced by the two actions affordthe same character.) Moreover, the number of A-orbits on IrrpBq and on CpBq coincide.
Proof : Set h :“ | IrrpBq| “ |CpBq| and write IrrpBq “ tχ1, . . . , χhu “: X1 and CpBq “ tC1, . . . , Chu “: X2.By Example 1(d), the A-actions on IrrpBq “: X1 and CpBq “: X2 define permutation representations

ρX1 : A Ñ GLpChq – GLhpCq and ρX2 : A Ñ GLpChq – GLhpCq
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respectively, which we see as matrix representations w.r.t. to the ordered C-basis pχ1, . . . , χhq and
pC1, . . . , Chq, respectively. Moreover, we denote by χX1 and χX2 , respectively, the characters afforded bythese representations. Now, by Proposition 10.1, for each a P A we have

χX1paq “ |FixX1paq| and χX2paq “ |FixX2paq| .

Hence, in order to complete the proof of the first claim, it is enough to prove that χX1 “ χX2 . Fix a P Aand observe that the action of a on X1 and X2 permutes the rows and the columns of XpBq, sendingthe row indexed by χi to the row indexed by a.χi, and the column indexed by Cj to the column indexedby a´1.Cj . (The reason for this choice will become clear in the next lines.) Then, the permutation ofthe rows is given by left multiplication with ρX1paq, i.e. ρX1paqXpBq, and the permutation of the columnsis given by right multiplication with ρX2paq, i.e. XpBqρX2paq. Moreover, the hypothesis of the theoremimplies that
pa.χqpcq “ χpa´1.cq @a P A, @ c P C, @C P CpBq .It follows that

ρX1paqXpBq “ XpBqρX2paqand hence, since XpNq is an invertible matrix, we get
ρX1paq “ XpNqρX2paqXpNq´1 ,

proving that ρX1 „ ρX2 and the claim follows.For the last claim, remember that the number of A-orbits on IrrpBq is given by xχX1 ,1AyA and the numberof A-orbits on CpBq is given by xχX2 ,1AyA. Now, both numbers are equal by the first claim.
We want to apply Brauer’s Permutation Lemma in order to obtain information on the character table ofFrobenius groups.
Remark 23.2If N ⊴ G, then G acts by conjugation on the sets IrrpNq and CpNq. In other words, there are left

G-actions
G ˆ IrrpNq ÝÑ IrrpNq

pg, χq ÞÑ g.χ :“ gχand
G ˆ CpNq ÝÑ CpNq

pg, Cq ÞÑ g.C :“ gC “ tgcg´1 | c P Cu .Moreover, it follows from the definition of a conjugate character that these actions satisfy thecondition
pg.χqpg.cq “ χpcq @ c P C and any C P CpNq .It follows that we may apply Brauer’s Permutation Lemma to this setting.

Theorem 23.3Let G be an arbitrary finite group. Assume that N⊴G and assume that CGpnq ď N for all n P Nzt1u.Then, the following assertions hold:
(a) if ψ P IrrpNqzt1Nu, then ψ ÒGN P IrrpGq ;
(b) if χ P IrrpGq is such that N ę kerpχq, then there exists ψ P IrrpNq such that χ “ ψ ÒGN .
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Proof :(a) First, it follows from the Mackey formula that xψ ÒGN , ψ ÒGNyG “

ř

xNPG{Nx xψ,ψyN . (See Exer-cise 20.5.) Thus, to prove that ψ ÒGN is irreducible, it suffices to prove that ψ ‰ xψ for each x R N ,since then the latter sum is equal to 1. Now, by Brauer’s Permutation Lemma and Remark 23, itis enough to prove that for each conjugacy class r1s ‰ C P CpNq and each x P G that the equality
xCx´1 “ C implies that x P N . So, let n P C . Then, xCx´1 “ C implies that xnx´1 “ yny´1 forsome y P N and hence y´1x P CGpnq ď N by the hypothesis, proving that x P N , as required.(b) Since N ę kerpχq, certainly χ ÓGN has at least one non-trivial constituent, say ψ P IrrpNqzt1Nu.Moreover, Frobenius reciprocity yields

xχ, ψ ÒGNyG “ xχ ÓGN , ψyH ‰ 0 .
Thus χ is a constituent of ψ ÒGN , but then this χ “ ψ ÒGN since ψ ÒGN P IrrpGq by (a).

This leads to the following characterisation of the irreducible characters of Frobenius groups.
Theorem 23.4Let G be a Frobenius group with Frobenius complement H and Frobenius kernel N . Then,

IrrpGq “ InfGG{N
` IrrpG{Nq

˘

\
␣

ψ ÒGN | ψ P IrrpNqzt1Nu
(

.

Note. Notice that the Frobenius complement H does not occur in the description of IrrpGq. Thus,choosing a different Frobenius complement would not change the result. Also notice that the secondset tψ ÒGN | ψ P IrrpNqzt1Nu
( may contain repetitions! In order to describe all characters of G whichdo not have N in their kernel, it suffices to consider a set of representatives of the G-orbits for theconjugation action of G on IrrpNqzt1Nu instead of IrrpNqzt1Nu.

Proof : It follows from Theorem 23.3 that it suffices to prove that CGpnq ď N for all n P Nzt1u. So,let n P Nzt1u and suppose that CGpnq ę N . Then, by the definition of N , there exists x P G suchthat CGpnq X xH ‰ t1u. Now, conjugating by x´1 and replacing n with x´1nx , we may assume that
CGpnq XH ‰ t1u. Thus, given 1 ‰ h P CGpnq XH , we have h P H X nH , which contradicts the fact that
H is a Frobenius complement.

Exercise 23.5Compute the character table of the dihedral group D2p2m`1q for all m P Zě1.
Exercise 23.6Let p ‰ q be two prime numbers. Let G be a non-abelian finite group such that |G| “ pq. Compute

| IrrpGq| and χp1Gq for each χ P IrrpGq.
Exercise 23.7Use Brauer’s Permutation Lemma to prove that:(a) the character table XpSnq is an integral matrix for all n ě 1;(b) if G is a finite group of odd order, then the map IrrpGq ÝÑ IrrpGq, χ ÞÑ χ admits a uniquefixed point, namely the trivial character 1G .
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Chapter 8. Modules over arbitrary rings

In this chapter, we review important module-theoretic concepts and main results, which lie at thefoundations of module theory over arbitrary rings:
1. Simplicity and indecomposability of modules.
2. Schur’s Lemma: about homomorphisms between simple modules.
2. Nakayama’s Lemma: about an essential property of the Jacobson radical.
3. The Krull-Schmidt Theorem: about direct sum decompositions into indecomposable submodules.

Notation: throughout this chapter, unless otherwise specified, we let pR,`, ¨q denote an arbitrary as-sociative ring, which we assume to be unital. We denote the neutral element for the multiplication by1R or simply 1. Modules are assumed to be left modules.
24 (Ir)Reducibility and (in)decomposability
As already mentioned in Appendix A (see in particular Definition A.11) submodules and direct sums ofmodules allow us to introduce the two main notions which enable us to break modules in elementarypieces in order to simplify their study: simplicity and indecomposability.
Definition 24.1 (simple/irreducible module / indecomposable module / semisimple module)

(a) An R-module M is called reducible if it admits an R-submodule U such that 0 Ĺ U Ĺ M .An R-module M is called simple, or irreducible, if it is non-zero and not reducible.We let IrrpRq denote a set of representatives of the isomorphism classes of simple R-modules.(b) An R-module M is called decomposable if M possesses two non-zero proper submodules
M1,M2 such that M “ M1 ‘M2. An R-module M is called indecomposable if it is non-zeroand not decomposable.(c) An R-module M is called completely reducible or semisimple if it admits a direct sumdecomposition into simple R-submodules.

75



Skript zur Vorlesung: Darstellungstheorie WS 24/25, Leibniz Universität Hannover 76
Our goal for the forthcoming chapters is to investigate each of these concepts in more details.
Remark 24.2Clearly any simple module is also indecomposable, resp. semisimple. However, the converse doesnot hold in general.
Notice that Schur’s Lemma (see 5.1) is true over an arbitrary ring. It reads as follows.
Theorem 24.3 (Schur’s Lemma)

(a) Let V ,W be simple R-modules. Then:
(i) EndRpV q is a skew-field, and(ii) if V fl W , then HomRpV ,W q “ 0.

(b) If K is an algebraically closed field, A is a K -algebra, and V is a simple A-module such thatdimK V ă 8, then EndApV q “ tλ IdV | λ P K u – K .

Proof : Replacing KG by R (resp. A), copy, word for word, the proof of Theorem 5.1.

25 The regular module
The ring R itself maybe seen as an R-module via left multiplication in R . Similarly to Part I, where weused the regular representation in order to understand essential properties of the irreducible represen-tations, we will be able to use this module to understand essential properties of the simple R-modules.
Definition 25.1 (The regular module)The regular R-module, denoted R˝, is the abelian group pR,`q endowed with the external compo-sition law

R ˆ R˝ ÝÑ R˝, pr, mq ÞÑ r ¨m .

Exercise 25.2Prove that:(a) the R-submodules of R˝ are precisely the left ideals of R ;
(b) I ◁ R is a maximal left ideal of R ô R˝{I is a simple R-module; and
(c) I ◁ R is a minimal left ideal of R ô I is simple when regarded as an R-submodule of R˝.
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26 The Jacobson radical and Nakayama’s Lemma
The Jacobson radical is one of the most important two-sided ideals of a ring. As we will see in the nextsections and chapters, this ideal carries a lot of information about the structure of a ring and that ofits modules.
Proposition-Definition 26.1 (Annihilator / Jacobson radical)

(a) Let M be an R-module. Then annRpMq :“ tr P R | rm “ 0 @ m P Mu is a two-sided idealof R , called the annihilator of M .
(b) The Jacobson radical of R is the two-sided ideal

JpRq :“ č

VPIrrpRq

annRpV q “ tx P R | 1 ´ axb P Rˆ @ a, b P Ru .

(c) If V is a simple R-module, then there exists a maximal left ideal I ◁ R such that V – R˝{I(as R-modules) and
JpRq “

č

I◁R,
I maximalleft ideal

I .

Proof : See Algebra II / Exercise!
Exercise 26.2(a) Prove that any simple R-module may be seen as a simple R{JpRq-module.

(b) Conversely, prove that any simple R{JpRq-module may be seen as a simple R-module.[Hint: use a change of the base ring via the canonical morphism R ÝÑ R{JpRq.]
(c) Deduce that R and R{JpRq have the same simple modules (i.e. when regarded as additiveabelian groups).

Theorem 26.3 (Nakayama’s Lemma)If M is a finitely generated R-module and JpRqM “ M , then M “ 0.
Proof : If M “ 0, then the claim is trivial. So, assume M ‰ 0 and let tm1, . . . , mnu (n P Zą0) be a setof generators for M which is minimal in the sense that none of its proper subsets generates M . Since

JpRqM “ M , there exist elements ri P JpRq for i “ 1, ..., n such that m1 “
řn
i“1 rimi and hence

p1 ´ r1qm1 “

n
ÿ

i“2 rimi

Now, Proposition-Definition 26.1(b) implies that 1 ´ r1 P Rˆ. Thus, letting u :“ p1 ´ r1q´1, we have
m1 “ 1R ¨m1 “ up1 ´ r1qm1 “

n
ÿ

i“2urimi ,

which is a contradiction to the minimality of tm1, . . . , mnu.
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Remark 26.4

(a) One often needs to apply Nakayama’s Lemma to a finitely generated quotient module M{U ,where U is an R-submodule of M . In that case the result may be interpreted as follows:
M “ U ` JpRqM ùñ U “ M .

(b) The hypothesis that the module M be finitely generated is necessary. See Exercise 27.2(a)(ii)below.

27 Indecomposability and the Krull-Schmidt Theorem
We now consider the notion of indecomposability in more details. Our first aim is to prove that inde-composability can be recognised at the endomorphism algebra of a module.
Definition 27.1A ring R is said to be local :ðñ RzRˆ is a two-sided ideal of R .
Example 16Any field K is local because K zKˆ “ t0u by definition. The zero ring is not local.
Exercise 27.2(a) Let p be a prime number and R :“ tab P Q | p ∤ bu.

(i) Prove that RzRˆ “ tab P R | p|au and deduce that R is local.(ii) Assume p “ 2 and consider the R-module M :“ Q. Prove that JpRqM “ M .
(b) Let K be a field and let R :“ !

A P MnpK q | A “

¨

˝

a1 a2 ... an0 a1 ... an´1... . . . ...0 0 ... a1

˛

‚

).
Prove that RzRˆ “ tA P R | a1 “ 0u and deduce that R is local.

Proposition 27.3Let R be a ring. Then TFAE:
(a) R is local;
(b) RzRˆ “ JpRq, i.e. JpRq is the unique maximal left ideal of R ;
(c) R{JpRq is a skew-field.

Proof : Set N :“ RzRˆ.(a)ñ(b): Clear: I ◁ R proper left ideal ñ I Ď N . Hence, by Proposition-Definition 26.1(c),
JpRq “

č

I◁R,
I maximalleft ideal

I Ď N .
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Now, by (a) N is an ideal of R , hence N must be a maximal left ideal, even the unique one. Itfollows that N “ JpRq.(b)ñ(c): If JpRq is the unique maximal left ideal of R , then in particular R ‰ 0 and R{JpRq ‰ 0. So let
r P RzJpRq

pbq
“ Rˆ. Then obviously r ` JpRq P pR{JpRqqˆ. It follows that R{JpRq is a skew-field.(c)ñ(a): Since R{JpRq is a skew-field by (c), R{JpRq ‰ 0, so that R ‰ 0 and there exists a P RzJpRq.Moreover, again by (c), a` JpRq P pR{JpRqqˆ, so that Db P RzJpRq such that

ab` JpRq “ 1 ` JpRq P R{JpRq

Therefore, D c P JpRq such that ab “ 1´c, which is invertible in R by Proposition-Definition 26.1(b).Hence Dd P R such that abd “ p1 ´ cqd “ 1 ñ a P Rˆ. Therefore RzJpRq “ Rˆ, and it followsthat RzRˆ “ JpRq which is a two-sided ideal of R .
Proposition 27.4 (Fitting’s Lemma)Let M be an R-module which has a composition series and let φ P EndRpMq be an endomorphismof M . Then there exists n P Zą0 such that

(i) φnpMq “ φn`ipMq for every i ě 1;
(ii) kerpφnq “ kerpφn`iq for every i ě 1; and

(iii) M “ φnpMq ‘ kerpφnq .

Proof : By Corollary E.4 the module M satisfies both A.C.C. and D.C.C. on submodules. Hence the twochains of submodules
φpMq Ě φ2pMq Ě . . . ,kerpφq Ď kerpφ2q Ď . . .eventually become stationary. Therefore we can find an index n satisfying both (i) and (ii).Exercise: Prove that M “ φnpMq ‘ kerpφnq.

Proposition 27.5Let M be an R-module which has a composition series. Then:
M is indecomposable ðñ EndRpMq is a local ring.

Proof : “ñ”: Assume that M is indecomposable. Let φ P EndRpMq. Then by Fitting’s Lemma there exists
n P Zą0 such that M “ φnpMq ‘ kerpφnq. As M is indecomposable either φnpMq “ M andkerpφnq “ 0 or φnpMq “ 0 and kerpφnq “ M .

¨ In the first case φ is bijective, hence invertible.
¨ In the second case φ is nilpotent.Therefore, N :“ EndRpMqz EndRpMqˆ “ tnilpotent elements of EndRpMqu.

Claim: N is a two-sided ideal of EndRpMq.Let φ P N and m P Zą0 minimal such that φm “ 0. Then
φm´1pφρq “ 0 “ pρφqφm´1 @ ρ P EndRpMq .

As φm´1 ‰ 0, φρ and ρφ cannot be invertible, hence φρ, ρφ P N .
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Next let φ, ρ P N . If φ ` ρ “: ψ were invertible in EndRpMq, then by the previous argument wewould have ψ´1ρ, ψ´1φ P N , which would be nilpotent. Hence

ψ´1φ “ ψ´1pψ ´ ρq “ IdM ´ψ´1ρ
would be invertible.(Indeed, ψ´1ρ nilpotent ñ pIdM ´ψ´1ρqpIdM `ψ´1ρ ` pψ´1ρq2 ` ¨ ¨ ¨ ` pψ´1ρqa´1q “ IdM , where
a is minimal such that pψ´1ρqa “ 0.)This is a contradiction. Therefore φ ` ρ P N , which proves that N is an ideal.Finally, it follows from the Claim and the definition that EndRpMq is local.“ð”: Assume M is decomposable and let M1,M2 be proper submodules such that M “ M1 ‘M2. Thenconsider the two projections

π1 : M1 ‘M2 ÝÑ M1 ‘M2, pm1, m2q ÞÑ pm1, 0q

onto M1 along M2 and
π2 : M1 ‘M2 ÝÑ M1 ‘M2, pm1, m2q ÞÑ p0, m2q

onto M2 along M1. Clearly π1, π2 P EndRpMq but π1, π2 R EndRpMqˆ since they are not surjectiveby construction. Now, as π2 “ IdM ´π1 is not invertible it follows from the characterisation of theJacobson radical of Proposition-Definition 26.1(b) that π1 R JpEndRpMqq. Therefore
EndRpMqz EndRpMqˆ ‰ J pEndRpMqq

and it follows from Proposition 27.3 that EndRpMq is not a local ring.
Next, we want to be able to decompose R-modules into direct sums of indecomposable submodules. TheKrull-Schmidt Theorem will then provide us with certain uniqueness properties of such decompositions.
Proposition 27.6Let M be an R-module. If M satisfies either A.C.C. or D.C.C., then M admits a decomposition intoa direct sum of finitely many indecomposable R-submodules.
Proof : Let us assume that M is not expressible as a finite direct sum of indecomposable submodules. Thenin particular M is decomposable, so that we may write M “ M1 ‘ W1 as a direct sum of two propersubmodules. W.l.o.g. we may assume that the statement is also false for W1. Then we also have adecomposition W1 “ M2 ‘W2, where M2 and W2 are proper sumbodules of W1 with the statement beingfalse for W2. Iterating this argument yields the following infinite chains of submodules:

W1 Ľ W2 Ľ W3 Ľ ¨ ¨ ¨ ,

M1 Ĺ M1 ‘M2 Ĺ M1 ‘M2 ‘M3 Ĺ ¨ ¨ ¨ .The first chain contradicts D.C.C. and the second chain contradicts A.C.C.. The claim follows.
Theorem 27.7 (Krull–Schmidt)Let M be an R-module which has a composition series. If

M “ M1 ‘ ¨ ¨ ¨ ‘Mn “ M 11 ‘ ¨ ¨ ¨ ‘M 1
n1 pn, n1 P Zą0q

are two decomposition of M into direct sums of finitely many indecomposable R-submodules, then
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n “ n1, and there exists a permutation π P Sn such that Mi – M 1

πpiq for each 1 ď i ď n and
M “ M 1

πp1q ‘ ¨ ¨ ¨ ‘M 1
πprq ‘

n
à

j“r`1Mj for every 1 ď r ď n.

Proof : For each 1 ď i ď n let
πi : M “ M1 ‘ ¨ ¨ ¨ ‘Mn Ñ Mi, m1 ` . . .`mn ÞÑ mi

be the projection on the i-th factor of the first decomposition, and for each 1 ď j ď n1 let
ψj : M “ M 11 ‘ ¨ ¨ ¨ ‘M 1

n1 Ñ M 1
j , m11 ` . . .`m1

n1 ÞÑ m1
jbe the projection on the j-th factor of the second decomposition.

Claim: if ψ P EndRpMq is such that π1 ˝ ψ|M1 : M1 Ñ M1 is an isomorphism, then
M “ ψpM1q ‘M2 ‘ ¨ ¨ ¨ ‘Mn and ψpM1q – M1 .

Indeed : By the assumption of the claim, both ψ|M1 : M1 Ñ ψpM1q and π1|ψpM1q : ψpM1q Ñ M1 must beisomorphisms. Therefore ψpM1q X kerpπ1q “ 0, and for every m P M there exists m11 P ψpM1q such that
π1pmq “ π1pm11q, hence m´m11 P kerpπ1q. It follows that

M “ ψpM1q ` kerpπ1q “ ψpM1q ‘ kerpπ1q “ ψpM1q ‘M2 ‘ ¨ ¨ ¨ ‘Mn .

Hence the Claim holds.Now, we have IdM “
řn1

j“1 ψj , and so IdM1 “
řn1

j“1 π1 ˝ ψj |M1 P EndRpM1q. But as M has a compositionseries, so has M1, and therefore EndRpM1q is local by Proposition 27.5. Thus if all the π1 ˝ ψj |M1 PEndRpM1q are not invertible, they are all nilpotent and then so is IdM1 , which is in turn not invertible.This is not possible, hence it follows that there exists an index j such that
π1 ˝ ψj |M1 : M1 Ñ M1

is an isomorphism and the Claim implies that M “ ψjpM1q ‘M2 ‘ ¨ ¨ ¨ ‘Mn and ψjpM1q – M1.We then set πp1q :“ j . By definition ψjpM1q Ď M 1
j as M 1

j is indecomposbale, so that
ψjpM1q – M 1

j “ M 1
πp1q .Finally, an induction argument (Exercise!) yields:

M “ M 1
πp1q ‘ ¨ ¨ ¨ ‘M 1

πprq ‘

n
à

j“r`1Mj ,

mit M 1
πpiq – Mi (1 ď i ď r). In particular, the case r “ n implies the equality n “ n1.



Chapter 9. The Structure of Semisimple Algebras

In this chapter we study an important class of rings: the class of rings R which are such that any
R-module can be expressed as a direct sum of simple R-submodules. We study the structure of suchrings through a series of results essentially due to Artin and Wedderburn. At the end of the chapterwe will assume that the ring is a finite dimensional algebra over a field and start the study of itsrepresentation theory.
Notation: throughout this chapter, unless otherwise specified, we let pR,`, ¨q denote a unital associativering, and we recall that IrrpRq denotes a set of representatives for the simple R-modules and R˝ is theregular module.
28 Semisimplicity of Rings and Modules
To begin with, we prove three equivalent characterisations for the notion of semisimplicity.
Proposition 28.1If M is an R-module, then the following assertions are equivalent:

(a) M is semisimple, i.e. M “
À

iPI Si for some family tSiuiPI of simple R-submodules of M;
(b) M “

ř

iPI Si for some family tSiuiPI of simple R-submodules of M;
(c) every R-submodule M1 Ď M admits a complement in M , i.e. D an R-submodule M2 Ď Msuch that M “ M1 ‘M2.

Before we prove of this result, it is useful to note the following property of semisimple modules.
Remark 28.2Notice that if an R-module M satisfies Condition (c), then so does any R-submodule of M . (Takea complement in M and intersect with the submodule considered.) In other words, any submoduleof a semisimple module is again semisimple.
Proof :(a)ñ(b): is trivial.

82



Skript zur Vorlesung: Darstellungstheorie WS 24/25, Leibniz Universität Hannover 83
(b)ñ(c): Write M “

ř

iPI Si, where Si is a simple R-submodule of M for each i P I . Let M1 Ď M be an
R-submodule of M . Then consider the family, partially ordered by inclusion, of all subsets J Ď Isuch that(1) ř

iPJ Si is a direct sum, and(2) M1 X
ř

iPJ Si “ 0.Clearly this family is non-empty since it contains the empty set. Thus Zorn’s Lemma yields theexistence of a maximal element J0. (Upper bounds are given by unions.) Now, set
M 1 :“ M1 `

ÿ

iPJ0
Si “ M1 ‘

ÿ

iPJ0
Si ,

where the second equality holds by (1) and (2). Therefore, it suffices to prove that M “ M 1, i.e.that Si Ď M 1 for every i P I . But if j P I is such that Sj Ę M 1, the simplicity of Sj implies that
Sj XM 1 “ 0 and it follows that

M 1 ` Sj “ M1 ‘

˜

ÿ

iPJ0
Si

¸

‘ Sj

in contradiction with the maximality of J0. The claim follows.(b)ñ(a): follows from the argument above with M1 “ 0.(c)ñ(b): Let M1 be the sum of all simple R-submodules in M . By (c) there exists a complement M2 Ď M to
M1, i.e. such that M “ M1 ‘M2.

¨ Case 1: M2 “ 0. We are done by definition of M1.
¨ Case 2: M2 ‰ 0. We prove that this case cannot happen. In fact, it is enough to prove that
M2 contains a simple R-submodule, say L, since then L Ď M1 by definition of M1, which is acontradiction.So let m P M2, m ‰ 0. By Remark 28.2 enough to treat the case M2 “ Rm. By Zorn’sLemma, there exists an R-submodule N of M2, maximal w.r.t. the property that m R N . Take a(necessarily non-zero) R-submodule N 1 such that M2 “ N ‘N 1. Then N 1 is simple. Indeed, if
N2 is a non-zero submodule of N 1, then N ‘N2 must contain m by the maximality of N andso N ‘N2 “ M2, which implies that N2 “ N 1, as required.It follows that M2 “ 0, proving that M “ M1, as required.

Example 17(a) The zero module is semisimple.(b) If S1, . . . , Sn are simple R-modules, then their direct sum S1 ‘ . . . ‘ Sn is semisimple bydefinition.(c) The following exercise shows that there exists modules which are not semisimple.Exercise: Let K be a field and let A be the K -algebra ␣` a1 a0 a1
˘

| a1, a P K
(. Consider the

A-module V :“ K 2, where A acts by left matrix multiplication. Prove that:(1) tp x0 q | x P K u is a simple A-submodule of V ; but(2) V is not semisimple.
(d) Exercise: Prove that any submodule and any quotient of a semisimple module is againsemisimple.
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Theorem-Definition 28.3 (Semisimple ring)A ring R satisfying the following equivalent conditions is called semisimple.

(a) All short exact sequences of R-modules split.
(b) All R-modules are semisimple.
(c) All finitely generated R-modules are semisimple.
(d) The regular left R-module R˝ is semisimple, and is a direct sum of a finite number of minimalleft ideals.

Proof : First, (a) and (b) are equivalent as a consequence of Lemma A.14 and the characterisation of semisim-ple modules given by Proposition 28.1(c). The implication (b) ñ (c) is trivial, and it is also trivial that(c) implies the first claim of (d), which in turn implies the second claim of (d). Indeed, if R˝ “
À

iPI Li forsome family tLiuiPI of minimal left ideals. Then, by definition of a direct sum, there exists a finite numberof indices i1, . . . , in P I such that 1R “ xi1 ` . . . ` xin with xij P Lij for each 1 ď j ď n. Therefore each
a P R may be expressed in the form

a “ a ¨ 1R “ axi1 ` . . .` axinand hence R˝ “ Li1 ` . . .` Lin .Therefore, it remains to prove that (d) ñ (b). So, assume that R satisfies (d) and let M be an arbitrarynon-zero R-module. Then write M “
ř

mPM R ¨m. Now, each cyclic submodule R ¨m of M is isomorphicto an R-submodule of R˝, which is semisimple by (d). Thus R ¨m is semisimple as well by Example 17(d).Finally, it follows from Proposition 28.1(b) that M is semisimple.
Example 18Fields are semisimple. Indeed, if V is a finite-dimensional vector space over a field K of dimension n,then choosing a K -basis te1, ¨ ¨ ¨ , enu of V yields V “ Ke1 ‘ . . . ‘ Ken, where dimK pKeiq “ 1,hence Kei is a simple K -module for each 1 ď i ď n. Hence, the claim follows from Theorem-Definition 28.3(c).
Corollary 28.4Let R be a semisimple ring. Then:

(a) R˝ has a composition series;
(b) R is both left Artinian and left Noetherian.

Proof :(a) By Theorem-Definition 28.3(d) the regular module R˝ admits a direct sum decomposition into afinite number of minimal left ideals. Removing one ideal at a time, we obtain a composition seriesfor R˝.(b) Since R˝ has a composition series, it satisfies both D.C.C. and A.C.C. on submodules by Corol-lary E.4. In other words, R is both left Artinian and left Noetherian.
Next, we show that semisimplicity is detected by the Jacobson radical. This leads us to introduce aslightly weaker concept: the notion of J-semisimplicity.
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Definition 28.5 (J-semisimplicity)A ring R is said to be J-semisimple if JpRq “ 0.
Exercise 28.6Let R “ Z. Prove that JpZq “ 0, but not all Z-modules are semisimple. In other words, Z is

J-semisimple but not semisimple.
Proposition 28.7Any left Artinian ring R is J-semisimple if and only if it is semisimple.
Proof : “ñ”: Assume R ‰ 0 and R is not semisimple. Pick a minimal left ideal I0⊴R (e.g. a minimal elementof the family of non-zero principal left ideals of R ). Then 0 ‰ I0 ‰ R since I0 seen as an R-moduleis simple.

Claim: I0 is a direct summand of R˝.
Indeed: since

I0 ‰ 0 “ JpRq “
č

I◁R,
I maximalleft ideal

I

there exists a maximal left ideal m0 ◁ R which does not contain I0. Thus I0 X m0 “ t0u and so wemust have R˝ “ I0 ‘ m0, as R{m0 is simple. Hence the Claim.Notice that then m0 ‰ 0, and pick a minimal left ideal I1 in m0. Then 0 ‰ I1 ‰ m0, else R wouldbe semisimple. The Claim applied to I1 yields that I1 is a direct summand of R˝, hence also in m0.Therefore, there exists a non-zero left ideal m1 such that m0 “ I1 ‘ m1. Iterating this process, weobtain an infinite descending chain of ideals
m0 Ľ m1 Ľ m2 Ľ ¨ ¨ ¨contradicting D.C.C. and proving the claim.“ð”: Conversely, if R is semisimple, then R˝ – R{JpRq ‘ JpRq by Theorem-Definition 28.3 and so as

R-modules,
JpRq “ JpRq ¨ pR{JpRq ‘ JpRqq “ JpRq ¨ JpRqso that by Nakayama’s Lemma JpRq “ 0.

Proposition 28.8The quotient ring R{JpRq is J-semisimple.
Proof : Since by Exercise 26.2 the rings R and R :“ R{JpRq have the same simple modules (seen as abeliangroups), Proposition-Definition 26.1(a) yields

JpRq “
č

VPIrrpRq

annRpV q “
č

VPIrrpRq

annRpV q ` JpRq “ JpRq{JpRq “ 0 .

29 The Artin-Wedderburn Structure Theorem
The next step in analysing semisimple rings and modules is to sort simple modules into isomorphismclasses. We aim at proving that each isomorphism type of simple modules actually occurs as a directsummand of the regular module. The first key result in this direction is the following proposition:
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Proposition 29.1Let M be a semisimple R-module. Let tMiuiPI be a set of representatives of the isomorphism classesof simple R-submodules of M and for each i P I set

Hi :“ ÿ

VĎM
V–Mi

V .

Then the following statements hold:
(i) M –

À

iPI Hi ;(ii) every simple R-submodule of Hi is isomorphic to Mi ;(iii) HomRpHi, Hi1q “ t0u if i ‰ i1; and
(iv) if M “

À

jPJ Vj is an arbitrary decomposition of M into a direct sum of simple submodules,then
rHi :“ ÿ

jPJ
Vj–Mi

Vj “
à

jPJ
Vj–Mi

Vj “ Hi .

Proof : We shall prove several statements which, taken together, will establish the theorem.
Claim 1: If M “

À

jPJ Vj as in (iv) and W is an arbitrary simple R-submodule of M , then D j P J suchthat W – Vj .Indeed: if tπj : M “
À

jPJ Vj ÝÑ VjujPJ denote the canonical projections on the j-th summand, then
D j P J such that πjpW q ‰ 0. Hence πj |W : W ÝÑ Vj is an R-isomorphism as both W and Vj are simple.
Claim 2: If M “

À

jPJ Vj as in (iv), then M “
À

iPI
rHi and for each i P I , every simple R-submodule of

rHi is isomorphic to Mi.Indeed: the 1st statement of the claim is obvious and the 2nd statement follows from Claim 1 appliedto rHi.
Claim 3: If W is an arbitrary simple R-submodule of M , then there is a unique i P I such that W Ď rHi.Indeed: it is clear that there is a unique i P I such that W – Mi. Now consider w P W zt0u and write
w “

ř

jPJ wj P
À

jPJ Vj with wj P Vj . The proof of Claim 1 shows that if any summand wj ‰ 0, then
πjpW q ‰ 0, and hence W – Vj . Therefore wj “ 0 unless Vj – Mi, and hence w P rHi, so that W Ď rHi.
Claim 4: HomRprHi, rHi1 q “ t0u if i ‰ i1.Indeed: if 0 ‰ f P HomRprHi, rHi1 q and i ‰ i1, then there must exist a simple R-submodule W of rHi suchthat fpW q ‰ 0, hence as W is simple, f |W : W ÝÑ fpW q is an R-isomorphism. It follows from Claim 2,that fpW q is a simple R-submodule of rHi1 isomorphic to Mi. This contradicts Claim 2 saying that everysimple R-submodule of rHi1 is isomorphic to Mi1 fl Mi.Now, it is clear that rHi Ď Hi by definition. On the other hand it follows from Claim 3, that Hi Ď rHi.Hence Hi “ rHi for each i P I , hence (iv). Then Claim 2 yields (i) and (ii), and Claim 4 yields (iii).

We give a name to the submodules tHiuiPI defined in Propostion 29.1:
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Definition 29.2If M is a semisimple R-module and S is a simple R-module, then the S-homogeneous componentof M , denoted SpMq, is the sum of all simple R-submodules of M isomorphic to S.
Exercise 29.3Let R be a semisimple ring. Prove the following statements.

(a) Every non-zero left ideal I of R is generated by an idempotent of R , in other words D e P Rsuch that e2 “ e and I “ Re. (Hint: choose a complement I 1 for I , so that R˝ “ I ‘ I 1 andwrite 1 “ e` e1 with e P I and e1 P I 1. Prove that I “ Re.)
(b) If I is a non-zero left ideal of R , then every morphism in HomRpI, R˝q is given by rightmultiplication with an element of R .
(c) If e P R is an idempotent, then EndRpReq – peReqop (the opposite ring) as rings via the map

f ÞÑ efpeqe. In particular EndRpR˝q – Rop via f ÞÑ fp1q.
(d) A left ideal Re generated by an idempotent e of R is minimal (i.e. simple as an R-module) ifand only if eRe is a division ring. (Hint: Use Schur’s Lemma.)
(e) Every simple left R-module is isomorphic to a minimal left ideal in R , i.e. a simple R-submodule of R˝.

Theorem 29.4 (Wedderburn)If R is a semisimple ring, then the following assertions hold.
(a) If S P IrrpRq, then SpR˝q ‰ 0. Furthermore, | IrrpRq| ă 8.
(b) We have

R˝ “
à

SPIrrpRq

SpR˝q ,

where each homogenous component SpR˝q is a two-sided ideal of R and SpR˝qT pR˝q “ 0 if
S ‰ T P IrrpRq.

(c) Each SpR˝q is a simple left Artinian ring, the identity element of which is an idempotentelement of R lying in Z pRq.
Proof :(a) By Exercise 29.3(e) every simple left R-module is isomorphic to a minimal left ideal of R , i.e. asimple submodule of R˝. Hence if S P IrrpRq, then SpR˝q ‰ 0. Now, by Theorem-Definition 28.3,the regular module admits a decomposition

R˝ “
à

jPJ
Vj

into a direct sum of a finite number of minimal left ideals Vj of R , and by Claim 1 in the proof ofProposition 29.1 any simple submodule of R˝ is isomorphic to Vj for some j P J . Hence, we have
| IrrpRq| ď |J| ă 8.
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(b) Proposition 29.1(iv) also yields SpR˝q “

À

Vj–S Vj and Proposition 29.1(i) implies that
R˝ “

à

SPIrrpRq

SpR˝q .

Next notice that each homogeneous component is a left ideal of R , since it is by definition a sum ofleft ideals. Now let L be a minimal left ideal contained in SpR˝q, and let x P T pR˝q for a T P IrrpRqwith S ‰ T . Then Lx Ď T pR˝q and because
φx : R˝ ÝÑ R˝, m ÞÑ mx

is an R-endomorphism of R˝, then either Lx “ φxpLq is zero or it is again a minimal left ideal,isomorphic to L. However, as S ‰ T , we have Lx “ 0. Therefore SpR˝qT pR˝q “ 0, which impliesthat SpR˝q is also a right ideal, hence two-sided.(c) Part (b) implies that the homogeneous components are rings. Then, using Exercise 29.3(a), we maywrite 1R “
ÿ

SPIrrpRq

eS ,

where SpR˝q “ ReS with eS idempotent. Since SpR˝q is a two-sided ideal, in fact we have
SpR˝q “ ReS “ eSR . It follows that eS is an identity element for SpR˝q.To see that eS is in the centre of R , consider an arbitrary element a P R and write a “

ř

TPIrrpRq aTwith aT P T pR˝q. Since SpR˝qT pR˝q “ 0 if S ‰ T P IrrpRq, we have eSeT “ δSTeS . Thus, as eTis an identity element for the T -homogeneous component, we have
eSa “ eS

ÿ

TPIrrpRq

aT “ eS
ÿ

TPIrrpRq

eTaT “
ÿ

TPIrrpRq

eSeTaT

“ eSaS
“ aSeS
“

ÿ

TPIrrpRq

aTeTeS “ p
ÿ

TPIrrpRq

aTeT qeS “ p
ÿ

TPIrrpRq

aT qeS “ aeS .

Finally, if L ‰ 0 is a two-sided ideal in SpR˝q, then L must contain all the minimal left ideals of
R isomorphic to S as a consequence of Exercise 29.3 (check it!). It follows that L “ SpR˝q andtherefore SpR˝q is a simple ring. It is left Artinian, because it is semissimple as an R-module.

Scholium 29.5If R is a semisimple ring, then there exists a set of idempotent elements teS P R | S P IrrpRqu suchthat:
(i) eS P Z pRq for each S P IrrpRq;

(ii) eSeT “ δSTeS for all S, T P IrrpRq;
(iii) 1R “

ř

SPIrrpRq eS ;
(iv) R “

À

SPIrrpRq ReS , where each ReS is a simple ring.
Idempotents satisfying Property (i) are called central idempotents, and idempotents satisfying Prop-erty (ii) are called orthogonal. So, we say that teS P R | S P IrrpRqu is a set of pairwise distinctcentral idempotents of R .
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Remark 29.6Remember that if R is a semisimple ring, then the regular module R˝ admits a composition series.Therefore, it follows from the Jordan-Hölder Theorem that

R˝ “
à

SPIrrpRq

SpR˝q –
à

SPIrrpRq

nS
à

i“1 S
for uniquely determined integers nS P Zą0.

Theorem 29.7 (Artin-Wedderburn)If R is a semisimple ring, then, as a ring,
R –

ź

SPIrrpRq

MnS pDSq ,

where DS :“ EndRpSqop is a division ring.
Before we proceed with the proof of the theorem, first recall that if we have a direct sum decomposition
U “ U1 ‘¨ ¨ ¨‘Ur (r P Zą0) of an R-module U , then EndRpUq is isomorphic to the ring of rˆr-matricesin which the pi, jq entry lies in HomRpUj , Uiq. This is because any R-endomorphism φ : U ÝÑ U maybe written as a matrix of components φ “ pφijq1ďi,jďr where φij : Uj inc.

ÝÑ U φ
ÝÑ U proj.

ÝÑ Ui, and whenviewed in this way R-endomorphisms compose in the manner of matrix multiplication. (Known fromlinear algebra if R is a field. The same holds over an arbitrary ring R .)
Proof : By Exercise 29.3(c), we have EndRpR˝q – Rop

as rings. On the other hand, since HomRpSpR˝q, T pR˝qq “ 0 for S fl T (e.g. by Schur’s Lemma, or byProposition 29.1), Wedderburn’s Theorem and the above observation yield
EndRpR˝q “ EndR ` à

SPIrrpRq

SpR˝q
˘

–
ź

SPIrrpRq

EndRpSpR˝qq

where EndRpSpR˝qq – MnS pEndRpSqq – MnS pEndRpSqopqop. Therefore, setting DS :“ EndRpSqop yieldsthe result. For by Schur’s Lemma EndRpSq is a division ring, hence so is the opposite ring.

30 Semisimple Algebras and Their Simple Modules
From now on we leave the theory of modules over arbitrary rings and focus on finite-dimensionalalgebras over a field K . Algebras are in particular rings, and since K -algebras and their modulesare in particular K -vector spaces, we may consider their dimensions to obtain further information. Inparticular, we immediately see that finite-dimensional K -algebras are necessarily left Artinian rings.Furthermore, the structure theorems of the previous section tell us that if A is a semisimple algebraover a field K , then

A˝ “
à

SPIrrpAq

SpA˝q –
à

SPIrrpAq

nS
à

i“1 Swhere nS corresponds to the multiplicity of the isomorphism class of the simple module S as a directsummand of A˝ in any given decomposition of A˝ into a finite direct sum of simple submodules. We shall
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see that over an algebraically closed field the number of simple A-modules is detected by the centreof A and also obtain information about the simple modules of algebras, which are not semisimple.
Exercise 30.1Let A be an arbitrary K -algebra over a commutative ring K .

(a) Prove that Z pAq is a K -subalgebra of A.
(b) Prove that if K is a field and A ‰ 0, then K ÝÑ Z pAq, λ ÞÑ λ1A is an injective K -homomorphism.
(c) Prove that if A “ MnpK q, then Z pAq “ K In, i.e. the K -subalgebra of scalar matrices. (Hint:use the standard basis of MnpK q.)
(d) Assume A is the algebra of 2 ˆ 2 upper-triangular matrices over K . Prove that

Z pAq “
␣` a 00 a

˘

| a P K
(

.

We obtain the following Corollary to Wedderburn’s and Artin-Wedderburn’s Theorems:
Theorem 30.2Let A be a semisimple finite-dimensional algebra over an algebraically closed field K , and let

S P IrrpAq be a simple A-module. Then the following statements hold:
(a) SpA˝q – MnS pK q and dimK pSpA˝qq “ n 2

S ;
(b) dimK pSq “ nS ;
(c) dimK pAq “

ř

SPIrrpAq dimK pSq2 ;
(d) | IrrpAq| “ dimK pZ pAqq.

Proof :(a) Since K “ K , Schur’s Lemma implies that EndApSq – K . Hence the division ring DS in thestatement of the Artin-Wedderburn Theorem is DS “ EndApSqop – K op “ K . Hence Artin-Wedderburn (and its proof) applied to the case R “ SpA˝q yields SpA˝q – MnS pK q. HencedimK pSpA˝qq “ n 2
S .(b) Since SpA˝q is a direct sum of nS copies of S, (a) yields:

n2
S “ nS ¨ dimK pSq ùñ dimK pSq “ nS

(c) follows directly from (a) and (b).(d) Since by Artin-Wedderburn and (a) we have A –
ś

SPIrrpAq MnS pK q, clearly
Z pAq –

ź

SPIrrpAq

Z pMnS pK qq “
ź

SPIrrpAq

K InS ,
where dimK pK InS q “ 1. The claim follows.
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Corollary 30.3Let A be a finite-dimensional algebra over an algebraically closed field K . Then,

| IrrpAq| “ dimK pZ pA{JpAqqq .

Proof : We have observed that A and A{JpAq have the same simple modules (see Exercise 26.2), hence
| IrrpAq| “ | IrrpA{JpAqq|. Moreover, the quotient A{JpAq is J-semisimple by Proposition 28.8, hencesemisimple by Proposition 28.7 because finite-dimensional algebras are left Artinian rings. Therefore itfollows from Theorem 30.2(d) that

| IrrpAq| “ | IrrpA{JpAqq| “ dimK
`

Z pA{JpAqq
˘

.

Corollary 30.4Let A be a finite-dimensional algebra over an algebraically closed field K . If A is commutative, thenany simple A-module has K -dimension 1.
Proof : First assume that A is semisimple. As A is commutative, A “ Z pAq. Hence parts (d) and (c) ofTheorem 30.2 yield

| IrrpAq| “ dimK pAq “
ÿ

SPIrrpAq

dimK pSq2
loooomoooon

ě1
,

which forces dimK pSq “ 1 for each S P IrrpAq.Now, if A is not semissimple, then again we use the fact that A and A{JpAq have the same simple modules(that is seen as abelian groups). Because A{JpAq is semisimple and also commutative, the argumentabove tells us that all simple A{JpAq-modules have K -dimension 1. The claim follows.
Finally, we emphasise that in this section the assumption that the field K is algebraically closed is ingeneral too strong and that it is possible to weaken this hypothesis so that Theorem 30.2, Corollary 30.3and Corollary 30.4 still hold.Indeed, if K “ K is algebraically closed, then Part (b) of Schur’s Lemma tells us that EndApSq – Kfor any simple A-module S. This is the crux of the proof of Theorem 30.2. The following terminologydescribes this situation.
Definition 30.5Let A be a finite-dimensional K -algebra. Then:

(a) A is called split if EndApSq – K for every simple A-module S; and
(b) an extension field K 1 of K is called a splitting field for A if the K 1-algebra K 1 bK A is split.

Of course if A is split then K itself is a splitting field for A.
Remark 30.6In fact for a finite-dimensional K -algebra A, the following assertions are equivalent:

(a) A is split;
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(b) the product, for S running through IrrpAq, of the structural homomorphisms A ÝÑ EndK pSq(mapping a P A to the K -linear map S ÝÑ S,m ÞÑ am) induces an isomorphism of K -algebras

A{JpAq –
ź

SPIrrpAq

EndK pSq .

This is a variation of the Artin-Wedderburn Theorem we have seen in the previous section.
Exercise 30.7Let K be a field and let A ‰ 0 be a finite-dimensional K -algebra. The aim of this exercise is toprove that JpAq is the unique maximal nilpotent left ideal of A and JpZ pAqq “ JpAq X Z pAq.Proceed as follows:

(a) Prove that there exists n P Zą0 such that JpAqn “ JpAqn`1.[Hint: consider dimensions.]
(b) Apply Nakayama’s Lemma to deduce that JpAqn “ 0 and conclude that JpAq is nilpotent.
(c) Prove that if I is an arbitrary nilpotent left ideal of A, then I Ď JpAq.[Hint: here you should see JpAq as the intersection of the annihilators of the simple A-modules.]
(d) Use the nilpotency of the Jacobson radical to prove that JpZ pAqq “ JpAq X Z pAq .



Chapter 10. Back to the Group Algebra

Our aim in this chapter is to understand what the general theory of semisimple rings and the Artin-Wedderburn theorem bring to the theory of representations of finite groups.
Notation. Throughout this chapter, unless otherwise specified, we let pG, ¨q denote a finite group and
K be a field. All KG-modules considered are assumed to be finite-dimensional over K . This implies,in particular, that they are finitely generated as KG-modules.
31 The Augmentation Ideal
Finally we introduce an ideal of KG which encodes a lot of information about KG-modules.
Proposition-Definition 31.1 (The augmentation ideal)The map ε : KG ÝÑ K,

ř

gPG λgg ÞÑ
ř

gPG λg is a homomorphism of K -algebras, called augmen-
tation homomorphism (or map). Its kernel kerpεq “: IpKGq is an ideal of KG and it is called the
augmentation ideal of KG. The following statements hold:

(a) IpKGq “ t
ř

gPG λgg P KG |
ř

gPG λg “ 0u “ annKGpK q and if K is a field IpKGq Ě JpKGq ;
(b) KG{IpKGq – K as K -algebras;
(c) IpKGq is a K -vector space of dimension |G|-1 with K -basis tg´ 1 | g P Gzt1uu.

Proof : First, observe that the map ε : KG ÝÑ K is the unique extension by K -linearity of the trivialrepresentation G ÝÑ Kˆ Ď K, g ÞÑ 1K to KG, hence is an algebra homomorphism and its kernel is anideal of KG. Moreover, each x P KG acts on K as multiplication by εpxq, and so acts as 0 preciselywhen εpxq “ 0.(a) We have IpKGq “ kerpεq “ t
ř

gPG λgg P KG |
ř

gPG λg “ 0u by definition of ε. The secondequality follows from the observation above as annKGpK q “ tx P KG | x ¨ K “ 0u. If K is a field,then the trivial KG-module K is simple, hence
annKGpK q Ě

č

VPIrrpKGq

annKGpV q “ JpKGq .

(b) Since ε is clearly surjective, the claim is immediate from the 1st isomorphism theorem.
93
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(c) Let řgPG λgg P IpKGq. Then ř

gPG λg “ 0 and hence
ÿ

gPG
λgg “

ÿ

gPG
λgg´ 0 “

ÿ

gPG
λgg´

ÿ

gPG
λg “

ÿ

gPG
λgpg´ 1q “

ÿ

gPGzt1u

λgpg´ 1q ,

which proves that the set tg ´ 1 | g P Gzt1uu generates IpKGq as a K -module. The abovecomputations also show that:
ÿ

gPGzt1u

λgpg´ 1q “ 0 ùñ
ÿ

gPG
λgg “ 0

in which case λg “ 0 @g P G as G is a K -basis of KG. This proves that the set tg´1 | g P Gzt1uuis also K -linearly independent, hence a K -basis of IpKGq.
Lemma 31.2If K is a field of positive characteristic p and G is p-group, then IpKGq “ JpKGq.
Exercise 31.3 (Proof of Lemma 31.2. Proceed as indicated.)

(a) Recall that an ideal I of a ring R is called a nil ideal if each element of I is nilpotent. Acceptthe following result: if I is a nil left ideal in a left Artinian ring R then I is nilpotent.
(b) Prove that g ´ 1 is a nilpotent element for each g P Gzt1u and deduce that IpKGq is a nilideal of KG.
(c) Deduce from (a) and (b) that IpKGq Ď JpKGq using Exercise 30.7
(d) Conclude that IpKGq “ JpKGq using Proposition-Definition 31.1.

32 Semisimplicity and Maschke’s Theorem
Our first aim is to reformulate the proof of Maschke’s Theorem in module-theoretic terms.
Theorem 32.1 (Maschke)If charpK q ∤ |G|, then KG is a semisimple K -algebra.
Proof : By Theorem-Definition 28.3, we need to prove that every s.e.s. 0 L M N 0φ ψ of KG-modules splits. However, the field K is clearly semisimple (again by Proposition-Definition 28.3). Henceany such sequence regarded as a s.e.s. of K -vector spaces and K -linear maps splits. So let σ : N ÝÑ Mbe a K -linear section for ψ and set

rσ :“ 1
|G|

ř

gPG g´1σg : N ÝÑ M
n ÞÑ 1

|G|

ř

gPG g´1σpgnq.
We may divide by |G|, since charpK q ∤ |G| implies that |G| P Kˆ. Now, if h P G and n P N , then

rσphnq “
1

|G|

ÿ

gPG
g´1σpghnq “ h 1

|G|

ÿ

gPG
pghq´1σpghnq “ hrσpnq
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and

ψrσpnq “
1

|G|

ÿ

gPG
ψ
`

g´1σpgnq
˘ ψ KG-lin

“
1

|G|

ÿ

gPG
g´1ψσpgnq “

1
|G|

ÿ

gPG
g´1gn “ n ,

where the last-but-one equality holds because ψσ “ IdN . Thus rσ is a KG-linear section for ψ.
Example 19If K “ C is the field of complex numbers, then CG is a semisimple C-algebra, since charpCq “ 0.
It turns out that the converse to Maschke’s theorem also holds, and follows from the properties of theaugmentation ideal.
Theorem 32.2 (Converse of Maschke’s Theorem)If KG is a semisimple K -algebra, then charpK q ∤ |G|.
Proof : Set charpK q “: p and let us assume that p | |G|. In particular p must be a prime number. We haveto prove that then KG is not semisimple.

Claim: If 0 ‰ V Ă KG is a KG-submodule of KG˝, then V X IpKGq ‰ 0.Indeed: Let v “
ř

gPG λgg P V zt0u. If εpvq “ 0 we are done. Else, set t :“ ř

hPG h. Then
εptq “

ÿ

hPG
1 “ |G| “ 0

as charpK q | |G|. Hence t P IpKGq. Now consider the element tv . On the one hand tv P V since V is asubmodule of KG˝, and on the other hand tv P IpKGqzt0u since
tv“

´

ÿ

hPG
h
¯´

ÿ

gPG
λgg

¯

“
ÿ

h,gPG
p1K ¨λgqhg“

ÿ

xPG

´

ÿ

gPG
λg
¯

x“
ÿ

xPG
εpvqx ñ εptvq“

ÿ

xPG
εpvq “ |G|εpvq“0 .

The Claim implies that IpKGq, which is a KG-submodule by definition, cannot have a complement in KG˝.Therefore, by Proposition 28.1, KG˝ is not semisimple and hence KG is not semisimple by Theorem-Definition 28.3.
In the case in which the field K is algebraically closed, or a splitting field for KG, the following exerciseoffers a second proof of the converse of Maschke’s Theorem exploiting the Artin-Wedderburn Theorem(Theorem 30.2).
Exercise 32.3 (Proof of the Converse of Maschke’s Theorem for K splitting field for KG.)Assume K is a field of positive characteristic p with p | |G| and is a splitting field for KG. Set

T :“ x
ř

gPG gyK .
(a) Prove that we have a series of KG-submodules given by KG˝ Ľ IpKGq Ě T Ľ 0.
(b) Deduce that KG˝ has at least two composition factors isomorphic to the trivial module K .
(c) Deduce that KG is not a semisimple K -algebra using Theorem 30.2.
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33 Simple Modules over Splitting Fields

Throughout this section, we assume that K is a splitting field for KG, and wesimply say that K is a splitting field for G.As explained at the end of the previous chapter this assumption, slightly weakerthan requiring that K “ K , implies that the conclusions of Theorem 30.2, Corol-lary 30.3 and Corollary 30.4 still hold.
We state here some elementary facts about simple KG-modules, which we obtain as consequences ofthe Artin-Wedderburn structure theorem.
Corollary 33.1If K is a splitting field for G, then there are only finitely many isomorphism classes of simple

KG-modules.
Proof : The claim follows directly from Assumption 33 and Corollary 30.3.
Corollary 33.2If G is an abelian group and K is a splitting field for G, then any simple KG-module is one-dimensional.
Proof : Since KG is commutative the claim follows directly from Assumption 33 and Corollary 30.4.
Corollary 33.3Let p be a prime number. If G is a p-group, K is a splitting field for G and charpK q “ p, then thetrivial module is the unique simple KG-module, up to isomorphism.
Proof : By Lemma 31.2 we have JpKGq “ IpKGq. Thus KG{JpKGq – K as K -algebras by Proposition-Definition 31.1(b). Now, as K is commutative, Z pK q “ K , and it follows from Assumption 33 andCorollary 30.3 that

| IrrpKGq| “ dimK Z pKG{JpKGqq “ dimK K “ 1 .
Remark 33.4Another standard proof for Corollary 33.3 consists in using a result of Brauer’s stating that | IrrpKGq|equals the number of conjugacy classes of G of elements of order not divisible by the characteristicof the field K .
Corollary 33.5If K is a splitting field for G and charpK q ∤ |G|, then |G| “

ř

SPIrrpKGq dimK pSq2.
Proof : Since charpK q ∤ |G|, the group algebra KG is semisimple by Maschke’s Theorem. Thus it followsfrom Assumption 33 and Theorem 30.2 that

ÿ

SPIrrpKGq

dimK pSq2 “ dimK pKGq “ |G| .
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34 Outlook: Further Directions and Connected Topics
The topics treated in the last week of the semester do not appear in these notes. They are not officiallypart of this series of lectures and are not exam matters.



Appendix I: Complements on Algebraic Structures

This appendix provides a short recap / introduction to some of the basic notions of module theory usedin this lecture.
Reference:

[Rot10] J. J. Rotman. Advanced modern algebra. 2nd ed. Providence, RI: American MathematicalSociety (AMS), 2010.

A Modules
Notation: Throughout this section we let R “ pR,`, ¨q denote a unital associative ring.
Definition A.1 (Left R-module)A left R-module is an ordered triple pM,`, ¨q, where M is a set endowed with an internal compo-

sition law
` : M ˆM ÝÑ M

pm1, m2q ÞÑ m1 `m2and an external composition law (or scalar multiplication)
¨ : R ˆM ÝÑ M

pr, mq ÞÑ r ¨msatisfying the following axioms:
(M1) pM,`q is an abelian group;
(M2) pr1 ` r2q ¨m “ r1 ¨m` r2 ¨m for every r1, r2 P R and every m P M;
(M3) r ¨ pm1 `m2q “ r ¨m1 ` r ¨m2 for every r P R and every m1, m2 P M;
(M4) prsq ¨m “ r ¨ ps ¨mq for every r, s P R and every m P M .
(M5) 1R ¨m “ m for every m P M .

98
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Remark A.2

(a) Note that in this definition both the addition in the ring R and in the module M are denotedwith the same symbol. Similarly both the internal multiplication in the ring R and the externalmultiplication in the module M are denoted with the same symbol. This is standard practiceand should not lead to confusion.
(b) Right R-modules can be defined analogously using a right external composition law

¨ : M ˆ R ÝÑ R, pm, rq ÞÑ m ¨ r.
(c) Unless otherwise stated, in this lecture we always work with left modules. Hence we simplywrite "R-module" to mean "left R-module", and as usual with algebraic structures, we simplydenote R-modules by their underlying sets.
(d) We often write rm instead of r ¨m.

Example A.3

(a) Modules over rings satisfy the same axioms as vector spaces over fields. Hence:vector spaces over a field K are K -modules, and conversely.
(b) Abelian groups are Z-modules, and conversely.(Check it! What is the external composition law?)
(c) If the ring R is commutative, then any right module can be made into a left module by setting

r ¨m :“ m ¨ r @ r P R,@ m P M , and conversely.(Check it! Where does the commutativity come into play?)
Definition A.4 (R-submodule)An R-submodule of an R-module M is a subgroup U ď M such that r ¨ u P U @ r P R , @ u P U .
Properties A.5 (Direct sum of R-submodules)If U1, U2 are R-submodules of an R-module M , then so is U1 `U2 :“ tu1 ` u2 | u1 P U1, u2 P U2u.Such a sum U1 ` U2 is called a direct sum if U1 X U2 “ t0u and in this case we write U1 ‘ U2.
Definition A.6 (Morphisms)Let M,N be R-modules. A (homo)morphism of R-modules (or an R-linear map, or an R-homomor-

phism) is a map φ : M ÝÑ N such that:
(i) φpm1 `m2q “ φpm1q ` φpm2q @ m1, m2 P M; and

(ii) φpr ¨mq “ r ¨ φpmq @ r P R , @ m P M .
A bijective morphism of R-modules is called an R-isomorphism (or simply an isomorphism), andwe write M – N if there exists an R-isomorphism between M and N .A morphism from an R-module to itself is called an endomorphism and a bijective endomorphism iscalled an automorphism.
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Properties A.7If φ : M ÝÑ N is a morphism of R-modules, then the kernel

kerpφq :“ tm P M | φpmq “ 0Nu

of φ is an R-submodule of M and the image
Impφq :“ φpMq “ tφpmq | m P Mu

of φ is an R-submodule ofN . IfM “ N and φ is invertible, then the inverse is the usual set-theoretic
inverse map φ´1 and is also an R-homomorphism.

Notation A.8Given R-modules M and N , we set HomRpM,Nq :“ tφ : M ÝÑ N | φ is an R-homomorphismu.This is an abelian group for the pointwise addition of maps:
` : HomRpM,Nq ˆ HomRpM,Nq ÝÑ HomRpM,Nq

pφ, ψq ÞÑ φ ` ψ : M ÝÑ N,m ÞÑ φpmq ` ψpmq .In case N “ M , we write EndRpMq :“ HomRpM,Mq for the set of endomorphisms of M . This is aring for the pointwise addition of maps and the usual composition of maps.
Lemma-Definition A.9 (Quotients of modules)Let U be an R-submodule of an R-module M . The quotient group M{U can be endowed with thestructure of an R-module in a natural way via the external composition law

R ˆM{U ÝÑ M{U
`

r, m` U
˘

ÞÝÑ r ¨m` U .

The canonical map π : M ÝÑ M{U,m ÞÑ m ` U is R-linear and we call it the canonical (or
natural) homomorphism or the quotient homomorphism.

Proof : Similar proof as for groups/rings/vector spaces/...
Theorem A.10 (The universal property of the quotient and the isomorphism theorems)

(a) Universal property of the quotient: Let φ : M ÝÑ N be a homomorphism of R-modules.If U is an R-submodule of M such that U Ď kerpφq, then there exists a unique R-modulehomomorphism φ : M{U ÝÑ N such that φ ˝π “ φ, or in other words such that the followingdiagram commutes:
M N

M{U

π

φ

ö

D!φ

Concretely, φpm` Uq “ φpmq @ m` U P M{U .
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(b) 1st isomorphism theorem: With the notation of (a), if U “ kerpφq, then

φ : M{ kerpφq ÝÑ Impφq

is an isomorphism of R-modules.
(c) 2nd isomorphism theorem: If U1, U2 are R-submodules of M , then so are U1XU2 and U1`U2,and there is an isomorphism of R-modules

pU1 ` U2q{U2 – U1{pU1 X U2q .

(d) 3rd isomorphism theorem: If U1 Ď U2 are R-submodules of M , then there is an isomorphismof R-modules
pM{U1q { pU2{U1q – M{U2 .

(e) Correspondence theorem: If U is an R-submodule of M , then there is a bijection
tR-submodules X of M | U Ď Xu ÐÑ tR-submodules of M{Uu

X ÞÑ X{U
π´1pZ q Ð[ Z .

Proof : Similar proof as for groups/rings/vector spaces/...
Definition A.11 (Irreducible/reducible/completely reducible module)An R-module M is called:

(a) simple (or irreducible) if it has exactly two submodules, namely the zero submodule 0 anditself;
(b) reducible if it admits a non-zero proper submodule 0 Ĺ U Ĺ M;
(c) semisimple (or completely reducible) if it admits a direct sum decomposition into simplesubmodules.

Notice that the zero R-module 0 is neither reducible, nor irreducible, but it is completely reducible.
Exact sequences constitute a very useful tool for the study of modules. Often we obtain valuableinformation about modules by plugging them in short exact sequences, where the other terms are known.

Definition A.12 (Exact sequence)

A sequence L φ
ÝÑ M ψ

ÝÑ N of R-modules and R-linear maps is called exact (at M) if Imφ “ kerψ.
Remark A.13 (Injectivity/surjectivity/short exact sequences)

(a) L φ
ÝÑ M is injective ðñ 0 ÝÑ L φ

ÝÑ M is exact at L.
(b) M ψ

ÝÑ N is surjective ðñ M ψ
ÝÑ N ÝÑ 0 is exact at N .
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(c) 0 ÝÑ L φ

ÝÑ M ψ
ÝÑ N ÝÑ 0 is exact (i.e. at L, M and N) if and only if φ is injective, ψ issurjective and ψ induces an R-isomorphism ψ : M{ Imφ ÝÑ N,m` Imφ ÞÑ ψpmq.Such a sequence is called a short exact sequence (s.e.s. for short).

(d) If φ P HomRpL,Mq is an injective morphism, then there is a s.e.s.
0 ÝÑ L φ

ÝÑ M π
ÝÑ Cokerpφq ÝÑ 0

where π is the canonical projection.
(e) If ψ P HomRpM,Nq is a surjective morphism, then there is a s.e.s.

0 ÝÑ kerpψq
i

ÝÑ M ψ
ÝÑ N ÝÑ 0 ,

where i is the canonical injection.
Lemma-Definition A.14 (Split short exact sequence)

A s.e.s. 0 ÝÑ L φ
ÝÑ M ψ

ÝÑ N ÝÑ 0 of R-modules is called split if it satisfies one of the followingequivalent conditions:
(a) ψ admits an R-linear section, i.e. if D σ P HomRpN,Mq such that ψ ˝ σ “ IdN ;
(b) φ admits an R-linear retraction, i.e. if D ρ P HomRpM, Lq such that ρ ˝ φ “ IdL;(c) D an R-isomorphism α : M ÝÑ L ‘N such that the following diagram commutes:

0 // L
φ //

IdL
��

ö

M
ψ //

α
��

ö

N //

IdN
��

0
0 // L i // L ‘N

p // N // 0 ,
where i, resp. p, are the canonical inclusion, resp. projection.

Remark A.15If the sequence splits and σ is a section, then M “ φpLq ‘ σpNq. If the sequence splits and ρ is aretraction, then M “ φpLq ‘ kerpρq.
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B Algebras
In this lecture we aim at studying modules over the group algebra, which are specific rings.
Definition B.1 (Algebra)Let R be a commutative ring.

(a) An R-algebra is an ordered quadruple pA,`, ¨, ˚q such that the following axioms hold:
(A1) pA,`, ¨q is a ring;
(A2) pA,`, ˚q is a left R-module; and
(A3) r ˚ pa ¨ bq “ pr ˚ aq ¨ b “ a ¨ pr ˚ bq @ a, b P A, @ r P R .

(b) A map f : A Ñ B between two R-algebras is called an algebra homomorphism iff:
(i) f is a homomorphism of R-modules; and(ii) f is a ring homomorphism.

Example 20

(a) A commutative ring R itself is an R-algebra.[The internal composition law "¨" and the external composition law "˚" coincide in this case.]
(b) For each n P Zě1 the set MnpRq of nˆ n-matrices with coefficients in a commutative ring Ris an R-algebra for its usual R-module and ring structures.[Note: in particular R-algebras need not be commutative rings in general!]
(c) Let K be a field. Then for each n P Zě1 the polynom ring K rX1, . . . , Xns is a K -algebra forits usual K -vector space and ring structure.
(d) If K is a field and V a finite-dimensional K -vector space, then EndK pV q is a K -algebra.
(e) R and C are Q-algebras, C is an R-algebra, . . .
(f ) Rings are Z-algebras.

Definition B.2 (Centre)The centre of an R-algebra pA,`, ¨, ˚q is Z pAq :“ ta P A | a ¨ b “ b ¨ a @b P Au.
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C Tensor Products of Vector Spaces
Throughout this section, we assume that K is a field.
Definition C.1 (Tensor product of vector spaces)Let V ,W be two finite-dimensional K -vector spaces with bases BV “ tv1, . . . , vnu and BW “

tw1, . . . , wmu (m,n P Zě0) respectively. The tensor product of V and W (balanced) over K is bydefinition the pn ¨mq-dimensional K -vector space
V bK W

with basis BVbKW “ tvi b wj | 1 ď i ď n, 1 ď j ď mu.
In this definition, you should understand the symbol "vi b wj " as an element that depends on both viand wj . The symbol "b" itself does not have any hidden meaning, it is simply a piece of notation: wemay as well write something like xpvi, wjq instead of "vi b wj ", but we have chosen to write "vi b wj ".
Properties C.2

(a) An arbitrary element of V bK W has the form
n
ÿ

i“1
m
ÿ

j“1 λijpvi b wjq with ␣

λij
(1ďiďn1ďjďm

Ď K .

(b) The binary operation
BV ˆ BW ÝÑ BVbKW

pvi, wjq ÞÑ vi b wj

can be extended by K -linearity to
´ b ´ : V ˆW ÝÑ V bK W

`

v “
řn
i“1 λivi, w “

řn
i“1 µjwj˘ ÞÑ v b w “

řn
i“1 řm

j“1 λiµjpvi b wjq .

It follows that @ v P V ,w P W, λ P K ,
v b pλwq “ pλvq b w “ λpv b wq ,

and @ x1, . . . , xr P V , y1, . . . ys P W ,
`

r
ÿ

i“1 xi
˘

b
`

s
ÿ

j“1yj
˘

“

r
ÿ

i“1
s
ÿ

j“1 xi b yj .

Thus any element of V bK W may also be written as a K -linear combination of elements ofthe form vbw with v P V ,w P W . In other words, tvbw | v P V ,w P W u generates V bK W(although it is not a K -basis).(c) Up to isomorphism V bK W is independent of the choice of the K -bases of V and W .



Skript zur Vorlesung: Darstellungstheorie WS 24/25, Leibniz Universität Hannover 105
Definition C.3 (Kronecker product)If A “

`

Aij
˘

ij P MnpK q and B “
`

Brs
˘

rs P MmpK q are two square matrices, then their Kronecker
product (or tensor product ) is the matrix

A b B “

»

—

–

A11B A1nB
An1B AnnB

fi

ffi

fl

P Mn¨mpK q .

Notice that it is clear from the above definition that TrpA b Bq “ TrpAq TrpBq.
Example 21E.g. the tensor product of two 2 ˆ 2-matrices is of the form

„

a b
c d

ȷ

b

„

e f
g h

ȷ

“

»

—

—

–

ae af be bf
ag ah bg bh
ce cf de df
cg ch dg dh

fi

ffi

ffi

fl

P M4pK q .

Lemma-Definition C.4 (Tensor product of K -endomorphisms)If f1 : V ÝÑ V and f2 : W ÝÑ W are two endomorphisms of finite-dimensional K -vector spaces Vand W , then the tensor product of f1 and f2 is the K -endomorphism f1 b f2 of V bK W defined by
f1 b f2 : V bK W ÝÑ V bK W

v b w ÞÑ pf1 b f2qpv b wq :“ f1pvq b f2pwq .Furthermore, Trpf1 b f2q “ Trpf1q Trpf2q.
Proof : It is straightforward to check that f1 b f2 is K -linear. Then, choosing ordered bases BV “ pv1, . . . , vnqand BW “ pw1, . . . , wmq of V and W respectively, it is straightforward from the definitions to check thatthe matrix of f1 b f2 w.r.t. the basis BVbKW , ordered w.r.t. the lexicographical order, is the Kroneckerproduct of the matrices of f1 w.r.t. BV and of f2 w.r.t. to BW . The trace formula follows.
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D Integrality and Algebraic Integers
We introduce here the concept of integrality for elements of a commutative ring. We are, however,essentially interested in the field of complex numbers and its subring Z.
Definition D.1 (integral element, algebraic integer )Let A be a subring of a commutative ring B.

(a) An element b P B is said to be integral over A if b is a root of monic polynomial f P ArX s(i.e. f is a polynomial of the form Xn `an´1Xn´1 ` . . .`a1X `a0 with an´1, . . . , a0 P A and
fpbq “ 0). If all the elements of B are integral over A, then we say that B is integral over A.

(b) If A “ Z and B “ C, an element b P C which is integral over Z is called an algebraic integer.
Theorem D.2Let B be a commutative ring, let A Ď B be a subring and let b P B. Then, the following assertionsare equivalent:

(a) b is integral over A;
(b) the ring Arbs is finitely generated as an A-module;
(c) there exists a subring S of B containing A and b which is finitely generated as an A-module.

Recall that Arbs denotes the subring of B generated by A and b.
Proof :(a)ñ(b): Let a0, . . . , an´1 P A such that bn ` an´1bn´1 ` . . . ` a1b ` a0 “ 0 (˚). We prove that Arbs isgenerated as an A-module by 1, b, . . . , bn´1, i.e. Arbs “ A`Ab` . . .`Abn´1. Therefore, it sufficesto prove that bk P A ` Ab` . . .` Abn´1 “: C for every k ě n. We proceed by induction on k :

¨ If k “ n, then (˚) yields bn “ ´an´1bn´1 ´ . . .´ a1b´ a0 P C .
¨ If k ą n, then we may assume that bn, . . . , bk´1 P C by the induction hypothesis. Hencemultiplying (˚) by bk´n yields

bk “ ´an´1bk´1 ´ . . .´ a1bk´n`1 ´ a0bk´n P Cbecause an´1, . . . , a0, bk´1, . . . , bk´n P C .(b)ñ(c): Set S :“ Arbs.(c)ñ(a): By the assumption, Arbs Ď S “ Ax1 ` . . . ` Axn, with x1, . . . , xn P B, n P Zą0. Thus, for each1 ď i ď n we have bxi “
řn
j“1 aijxj for certain aij P A. Set x :“ px1, . . . , xnqTr and consider the

nˆ n-matrix M :“ bIn ´ paijqij P MnpSq . Hence,
Mx “ 0 ñ adjpMqMx “ 0 ,where adjpMq is the adjugate matrix of M (i.e. the transpose of its cofactor matrix). By theproperties of the determinant (Linear Algebra), we haveadjpMqM “ detpMqIn .Hence, detpMqxi “ 0 for each 1 ď i ď n, and so we have detpMqs “ 0 for every s P S. As 1 P S,this implies that detpMq “ 0. It now follows from the definition of M that b is a root of the monicpolynomial detpX ¨ In ´ paijqijq P ArX s, thus integral over A.
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Corollary D.3Let B be a commutative ring and let A Ď B be a subring. Then tb P B | b integral over Au is asubring of B.
Proof : We need to prove that if b, c P B are integral over A, then so are b` c and b ¨ c. By Theorem D.2(b)and its proof both Arbs and Arcs are finitely generated as an A-modules. More precisely, there exist

n,m P Zą0 such that Arbs “ A`Ab` . . .`Abn´1 and Arcs “ A`Ac` . . .`Acm´1 . Thus, S :“ Arb, csis generated as an A-module by the set tbicj | 0 ď i ă n, 0 ď j ă mu, i.e. finitely generated.Theorem D.2(c) now yields that b` c and b ¨ c are integral over A because they belong to S.
Example 22All the elements of the ring Zris of Gaussian integers are integral over Z, hence algebraic integers,since i is a root of X2 ` 1 P ZrX s.
Lemma D.4If b P Q is integral over Z, then b P Z.
Proof : We may write b “ c

d , where c and d are coprime integers and d ě 1. By the hypothesis, there exist
a0, . . . , an´1 P Z such that

cn
dn ` an´1 cn´1

dn´1 ` . . .` a1 cd ` a0 “ 0 ,
hence

cn ` dan´1cn´1 ` . . .` dn´1a1 ` dna0
looooooooooooooooooooomooooooooooooooooooooondivisible by d

“ 0 .
Thus d | cn. As gcdpc, dq “ 1 and d ě 1 this is only possible if d “ 1, and we deduce that b P Z.

Clearly, the aforementioned lemma can be generalised to integral domains and their field of fractions.
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E Chain Conditions and the Jordan-Hölder Theorem
Definition E.1 (Composition series / composition factors / composition length)Let M be an R-module.

(a) A series (or filtration) of M is a finite chain of submodules
0 “ M0 Ď M1 Ď . . . Ď Mn “ M pn P Zě0q .

(b) A composition series of M is a series
0 “ M0 Ď M1 Ď . . . Ď Mn “ M pn P Zě0q

where Mi{Mi´1 is simple for each 1 ď i ď n. The quotient modules Mi{Mi´1 are called the
composition factors (or the constituents) of M and the integer n is called the composition
length of M .

The zero module is understood to have a composition series 0 “ M0 “ M (i.e. with n “ 0) and compo-sition length equal to 0. Moreover, clearly, in a composition series of a non-zero module all inclusionsare in fact strict because the quotient modules are required to be simple, hence non-zero.
Definition E.2 (Chain conditions / Artinian and Noetherian rings and modules)

(a) An R-module M is said to satisfy the descending chain condition (D.C.C.) on submodules(or to be Artinian) if every descending chain M “ M0 Ě M1 Ě . . . Ě Mr Ě . . . Ě t0u ofsubmodules eventually becomes stationary, i.e. D m0 such that Mm “ Mm0 for every m ě m0.
(b) An R-module M is said to satisfy the ascending chain condition (A.C.C.) on submodules (or tobe Noetherian) if every ascending chain 0 “ M0 Ď M1 Ď . . . Ď Mr Ď . . . Ď M of submoduleseventually becomes stationary, i.e. D m0 such that Mm “ Mm0 for every m ě m0.
(c) The ring R is called left Artinian (resp. left Noetherian) if the regular module R˝ is Artinian(resp. Noetherian).

Next we see that the existence of a composition series implies that the module is finitely generated.However, the converse does not hold in general. This is explained through the fact that the existenceof a composition series is equivalent to the fact that the module is both Noetherian and Artinian.
Theorem E.3 (Jordan-Hölder )Any series of R-submodules 0 “ M0 Ď M1 Ď . . . Ď Mr “ M (r P Zě0) of an R-module M ‰ 0which has a composition series may be refined to a composition series of M . In addition, if0 “ M0 Ĺ M1 Ĺ . . . Ĺ Mn “ M pn P Zě0qand 0 “ M 10 Ĺ M 11 Ĺ . . . Ĺ M 1

m “ M pm P Zě0qare two composition series of M , then m “ n and there exists a permutation π P Sn such that
M 1
i{M 1

i´1 – Mπpiq{Mπpiq´1 for every 1 ď i ď n. In particular, the composition length is well-defined.
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Proof : See Algebra II.
Corollary E.4If M is an R-module, then TFAE:

(a) M has a composition series;
(b) M satisfies D.C.C. and A.C.C. on submodules;
(c) M satisfies D.C.C. on submodules and every submodule of M is finitely generated.

Proof : See Algebra II.
Theorem E.5 (Hopkins’ Theorem)If M is a module over a left Artinian ring, then TFAE:

(a) M has a composition series;
(b) M satisfies D.C.C. on submodules;
(c) M satisfies A.C.C. on submodules;
(d) M is finitely generated.

Proof : See Algebra II.



Index of Notation

General symbols
C field of complex numbers
Fq finite field with q elements
i primitive square root of one in CIdM identity map on the set MImpfq image of the map fkerpφq kernel of the morphism φ
N the natural numbers without 0
N0 the natural numbers with 0
P the prime numbers in Z
Q field of rational numbers
R field of real numbers
Z ring of integer numbers
Zěa,Ząa,Zďa,Zăa tm P Z | m ě a (resp. m ą a,m ě a,m ă aqu

|X | cardinality of the set X
δij Kronecker’s delta
Ť union
š disjoint union
Ş intersection
ř summation symbol
ś, ˆ cartesian product
‘ direct sum
b tensor product
H empty set
@ for all
D there exists
– isomorphism
a complex conjugate of a P C
a | b , a ∤ b a divides b, a does not divide b
f |S restriction of the map f to the subset S
Group theory
An alternating group on n letters
Cm cyclic group of order m in multiplicative notation
CGpxq centraliser of x in G
CpGq set of conjugacy classes of G
D2n dihedral group of order 2nFixX pgq set of fixed points of g on X
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rG,Gs or G1 commutator subgroup of G
G{N quotient group G modulo NGLnpK q general linear group over K
H ď G, H ă G H is a subgroup of G, resp. a proper subgroup
N Ĳ G N is a normal subgroup G
NGpHq normaliser of H in GPGLnpK q projective linear group over K
Q8 quaternion group of order 8
Sn symmetric group on n lettersSLnpK q special linear group over KSylppGq set of Sylow p-subgroups of the group G
Z pGq centre of the group G
Z{mZ cyclic group of order m in additive notation
|G| order of the group G
|G : H| index of H in G
rxs conjugacy class of x
rg, hs commutator of g and h
xgy cyclic group generated by g
xg | gm “ 1y cyclic group of order m generated by g
Linear algebradet determinant of a matrix/linear transformationdimK K -dimensionEndK pV q endomorphism ring of the K -vector space VGLpV q set of invertible linear transformations ofthe vector space V
xx1, ¨ ¨ ¨ , xnyK K -linear span of the set tx1, ¨ ¨ ¨ , xnu

MnˆmpK q ring of nˆm-matrices with coefficients in K
MnpK q ring of nˆ n-matrices with coefficients in K
K algebraic closure of the field KTr trace of a matrix/linear transformation
W ď V W is a K -subspace of V
te1, ¨ ¨ ¨ , enu a basis of K n

pe1, ¨ ¨ ¨ , enq an ordered basis of K n

Representations and characters
C1, . . . , Cr the conjugacy classes of G
xC1, . . . ,xCr the class sums of G
ClpGq C-vector space of class functions on G
IGpψq inertia group of ψ in GInfGG{N inflation from G{N to GIndGH , ÒGH induction from H to GIrrpGq “ tχ1, . . . , χru set of irreducible characters of GIrrpG|ψq set of irreducible characters of G above ψkerpχq kernel of the characters of χ
FpG,K q space of K -valued functions of G



KG group algebra of G over the field KResGH , ÓGH restriction from G to H
Z pKGq centre of KG
Z pχq centre of the character χ
ρ „ ρ1 ρ is equivalent to ρ1

ρreg the regular representation of G
ρV representation associated to the G-vector space V
χreg regular character of G
χV character of the G-vector space V
ω1, . . . , ωr the central characters of G
x´,´yG scalar product on ClpGq

1G the trivial character of G
Ring and module theoryHomRpM,Nq R-homomorphisms from M to NEndRpMq R-endomorphism ring of the R-module M
KG group algebra of the group G over the field K
ε : KG ÝÑ K augmentation map
IpKGq augmentation idealIrrpRq set of representatives of the isomorphism classes ofsimple R-modules
JpRq Jacobson radical of the ring R
M | N M is a direct summand of N
M bR N tensor product of M and N balanced over R
R˝ regular left R-module on the ring R
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Greek Alphabet

lower-case letter upper-case letter name
α A alpha
β B beta
γ Γ gamma
δ ∆ delta
ε, ε E epsilon
ζ Z zeta
η H eta
θ Θ theta
ι I iota
κ K kappa
λ Λ lambda
µ M mu
ν N nu
ξ Ξ xi
o O omicron
π,π Π pi
ρ, ρ P rho
σ, ς Σ sigma
τ T tau
υ Υ upsilon
φ, φ Φ phi
χ X chi
ψ Ψ psi
ω Ω omega
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