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Foreword

Together with the necessary theoretical foundations, the main aims of this lecture are to:
e provide students with a modern approach to finite group theory;

e learn about the representation and character theory of finite groups and the representation
theory of semisimple algebras;

e learn about the applications of the latter theory to finite group theory, such as for example the
proof of Burnside’s p?g®-Theorem.

The exercises mentioned in the text are important for the development of the lecture and the general
understanding of the topics. Further exercises can be found in the weekly exercise sheets.
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Conventions

Unless otherwise stated, throughout these notes we make the following general assumptions:

- all groups considered are finite;
- all vector spaces considered are finite-dimensional;

- all rings considered are associative and unital (i.e. possess a neutral element for the
multiplication, denoted 1);

- all modules considered are left modules.
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Part |.
Ordinary Representation Theory



Chapter 1. Linear Representations of Finite Groups

Representation theory of finite groups is originally concerned with the ways of writing a finite group G
as a group of matrices, that is using group homomorphisms from G to the general linear group GL,(K)
of invertible n x n-matrices with coefficients in a field K for some non-negative integer n.

Notation: throughout this chapter, unless otherwise specified, we let:
- G denote a finite group (in multiplicative notation);
- K denote a field of arbitrary characteristic; and

-V denote a K-vector space such that dimg(V) < o0 and GL(V) := Autk (V) its group of K-
automorphisms.

In general, unless otherwise stated, all groups considered are assumed to be finite and all K-vector
spaces considered are assumed to be finite-dimensional.

1 Linear Representations

Definition 1.1 (K -representation, matrix representation, faithfullness)

Let n € Z>( be a non-negative integer.

(@) A K-representation of G (or a (linear) representation of G (over K)) of degree n is a group

homomorphism
p:G— GL(V)

where V' is a K-vector space of dimension n.
(b) A matrix representation of G over K of degree n is a group homomorphism R : G — GL,(K).

An injective (matrix) representation of G over K is called faithful.

R_emark 1.2

We see at once that both concepts of a representation and of a matrix representation are closely
connected.
Recall that every choice of an ordered basis B of V yields a group isomorphism
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ag: GL(V) — GL,(K)
¢ = (9)B

where (¢)p denotes the matrix of ¢ in the basis B. Therefore, a K-representation p : G — GL(V/)
together with the choice of an ordered basis B of V gives rise to a matrix representation of G:

G —— auv)

~..0 o
~o >~ B
Rp:=agop g

GLA(K).

Explicitly, Rg sends an element g € G to the matrix (p(g))B of p(g) expressed in the basis B.
Another choice of a K-basis of V yields another matrix representation!!

It is also clear from the diagram that, conversely, any matrix representation R : G — GL,(K)
gives rise to a K-representation pg := a§1 oR of G.

Throughout the lecture, we will favour the approach using representations rather than matrix represen-
tations in order to develop theoretical results. However, matrix representations are essential to carry
out computations. Being able to pass back and forth from one approach to the other will be an essential
feature.

Also note that Remark 1.2 allows us to transfer terminology/results from representations to matrix
representations and conversely. Hence, from now on, in general we make new definitions for represen-
tations and use them for matrix representations as well.

Example 1

(@) If G is an arbitrary finite group and V := K, then

p: G — GLK)=K*
g = p(g):=Ildc &1k

is a K-representation of G, called the trivial representation of G.
Similarly p : G — GL(V), g — Idy with dimg (V) =: n > 1 is also a K-representation of G
and is called a trivial representation of G of degree n.

(b) If G is a subgroup of GL(V), then the canonical inclusion
G — GL(V)
g = g
is a faithful representation of G, called the tautological representation of G.

(c) Let G := S, (n = 1) be the symmetric group on n letters. Let {eq,..., en} be the standard
basis of V := K”. Then

p: S, — GL(K")
o = p(0): K" — K" e ez

is a K-representation, called the natural representation of S,,.
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(d) More generally, if X is a finite G-set, i.e. afinite set endowed with a left action - : Gx X — X,
and V is a K-vector space with basis {e, | x € X}, then

px: G — GL(V)
g = px(g):V— Ve egy

is a K-representation of G, called the permutation representation associated with X.

Notice that (c) is a special case of (d) with G =S, and X ={1,2,..., n}.
If X = G and the left action - : G x X — X is just the multiplication in G, then

Px =: Preg

is called the reqular representation of G.

We shall see later on in the lecture that K-representations are a special case of a certain algebraic
structure (in the sense of the lecture Algebraische Strukturen). Thus, next, we define the notions that
shall correspond to a homomorphism and an isomorphism of this algebraic structure.

Definition 1.3 (Homomorphism of representations, equivalent representations)

Let p, : G — GL(V4) and p, : G — GL(V2) be two K-representations of G, where V4, V> are
two finite-dimensional K-vector spaces.

(a) A K-homomorphism a : Vi — V; such that p,(g) o a = a0 p,(g) for each g € G is called a
homomorphism of representations (or a G-homomorphism) between p, and p,.

V pi(g) V

1 1
o O la
V2 —_— V2
P2(9)

(b) If, moreover, a is a K-isomorphism, then it is called an isomorphism of representations (or a
G-isomorphism), and the K-representations p, and p, are called equivalent (or isomorphic).
In this case we write p; ~ p,.

(c) Two matrix representations Ry, R, : G — GL,(K) are called equivalent iff 3 T € GL,(K)
such that
Ri(g)=TRi(g)T'  VgeG.

In this case we write R} ~ Ry.

Remark 1.4

(@) Equivalent representations have the same degree.
(b) Clearly ~ is an equivalence relation.

(c) Consequence: it essentially suffices to study representations up to equivalence (as it essen-
tially suffices to study groups up to isomorphism).
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Remark 1.5
If p: G—> GL(V) is a K-representation of G and E := (eq,..., en), F:=(f,..., f,) are two
ordered bases of V, then by Remark 1.2, we have two matrix representations:
Re: G — GL,(K) Rr: G — GL,(K)
and
g — (p(9)g g — (p9)r

These matrix representations are equivalent since Re(g) = TRe(g)T~' Vg € G, where T is the
change-of-basis matrix.

2 Subrepresentations and (Ir)reducibility

Subrepresentations allow us to introduce one of the main notions that will enable us to break repre-
sentations in elementary pieces in order to simplify their study: the notion of (ir)reducibility.

Definition 2.1 (G-invariant subspace, irreducibility)
Let p: G —> GL(V) be a K-representation of G.

(@) A K-subspace W < V is called G-invariant if
p(g)(W)cW  VgeG.

(In fact, in this case the reverse inclusion holds as well, since for each w € W we can write
w=p(g9~")(w) = p(g)(p(g~")(w)) € p(g) (W), hence p(g)(W) = W)

(b) The representation p is called reducible if V admits a non-trivial proper G-invariant K-
subspace {0} & W < V, whereas p is called irreducible if it admits exactly two G-invariant
subspaces: {0} and V itself.

Notice that V itself and the zero subspace {0} are always G-invariant K-subspaces. Moreover, p is
irreducible if it is not reducible and V' # {0}.

Definition 2.2 (Subrepresentation)

If p: G—> GL(V) is a K-representation and W < V is a G-invariant K-subspace, then

py: G — GL(W)
g = pwlg)=p@)ly

is called a K-subrepresentation of p. (This is clearly again a representation of G.)

Remark 2.3

Let p: G —> GL(V) be a K-representation and 0 # W < V be a G-invariant K-subspace of V.
Now choose an ordered basis B’ of W and complete it to an ordered basis B of V. Then for each
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g € G the corresponding matrix representation evaluated at g is of the form

(PW(Q)) *

B/

(P(Q))B =

0 *
B B\B'

Example 2

(a)
(b)

Any K-representation of degree 1 is irreducible, for dimension reasons!

Let p: S, — GL(K") be the natural representation of S, (n > 1) and let B := (e1,..., e,)
be the standard basis of V = K”. Then for each g € G we have

p(9)(Ye) = X plg)ed = Yer,
i=1 i=1

i=1

where the last equality holds because p(g) : {e1,..., ent — {er,..., en} e — eg( is a
bijection. Thus

W= <Z ei K
i=1
is an S,-invariant K-subspace of K” of dimension 1. It follows that p is reducible if n > 1.

More generally, the trivial representation of a finite group G is a subrepresentation of any
permutation representation of G. [Exercise on Sheet 1]

The symmetric group S3 = {(1 2), (1 2 3)) admits the following three pairwise non-equivalent
irreducible matrix representations over C:

p:S3—C* a—1
i.e. the trivial representation,
p2:S3—> C*, 0 sign(o)
where sign(o) denotes the sign of the permutation o, and

P3: 53 —> GL

N
—

C)

).

| o=
oo —

— (9

0

123) — (9
See [Exercise on Sheet 1].

We will prove later in the lecture that these are all the irreducible C-representations of S3
up to equivalence.
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Properties 2.4

Let p, : G — GL(V4) and p, : G —> GL(V2) be two K-representations of G and let o : Vi — V)
be a G-homomorphism.

(@) f W< Vi is a G-invariant K-subspace of V4, then a(W) < V, is G-invariant.
(b) If W < V, is a G-invariant K-subspace of V5, then a1 (W) < V4 is G-invariant.

(c) In particular, ker(a) and Im(a) are G-invariant K-subspaces of V; and V; respectively.

Proof: [Exercise on Sheet 1]. |

3 Maschke's Theorem

We now come to our first major result in the representation theory of finite groups, namely Maschke's
Theorem, which provides us with a criterion for representations to decompose into direct sums of irre-
ducible subrepresentations.

Definition 3.1 (Direct sum of subrepresentations)

Let p: G —> GL(V) be a K-representation. If Wi, W, < V are two G-invariant K-subspaces such
that V. = Wj @ W,, then we say that p is the direct sum of the subrepresentations py, and py,,
and we write p = p, @ pyy,.

Remark 3.2

With the notation of Definition 3.1, if we choose an ordered basis B; of W; (i = 1,2) and consider
the ordered K-basis B := By 1 B; of V, then the corresponding matrix representation is of the form

(P (@), 0
(p(9))g = VgeG.

0 (PWZ(Q))B

By B

The following exercise shows that it is not always possible to decompose representations into direct
sums of irreducible subrepresentations.

Exercise 3.3

Let p be an odd prime number, let G := C, ={g | g’ = 1), let K :=F,, and let V := Flz) with its
canonical basis B = (e1, ). Consider the matrix representation
R: G — GLy(K)
g~ (o1)

(@) Prove that Keq is G-invariant and deduce that R is reducible.
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Theorem 3.4 (MASCHKE)
Let G be a finite group and let p : G — GL(V) be a K-representation of G. If char(K) { |G

K-subspace U € V such that V =W ® U.

Proof: To begin with, choose an arbitrary complement Up to W in V, i.e. V = W @ Uy as K-vector spaces.
(Note that, however, Uy is possibly not G-invariant!) Next, consider the projection onto W along Up,
that is the K-linear map

a:V=Wel— W
which maps an element v = w + v with w e W, u € Uy to w, and define a new K-linear map
. V. — V
Voo g Leea P(9)mp(g ().

Notice that it is allowed to divide by |G| because the hypothesis that char(K) |G| implies that |G| - 1k
is invertible in the field K.
We prove the following assertions:

(1) Im7r < W: indeed, if v € V, then

(v) = p(g~ ") (v
ﬂ(V)—‘G‘gEZGp(g) plg™Hv) ew.
ew

eW (G-invariance)

(2) #lw = ldw: indeed, if w e W, then

N 1 B 1 B 1
ﬂ(W)=mZp(g)ﬂ p(g™")(w) =ﬁg;cp(g)p(g 1)(w)=@ w=w.

9ea ew =p(997") gec
(by G-invariance) =p(1c)
M =ldy

=p(g~")(w)
(by def. of )

Thus (1)+(2) imply that 7 is a projection onto W so that as a K-vector space
V=Waker(7).

(3) ker(7) is G-invariant: indeed, for each h € G we have

2,
=
o
L
I

|1?| S p(h)p(g) mp(g ™)
geG =p(hg)

e > p(hg)mp((hg)~"h)

Hence 7 is a G-homomorphism and it follows from Property 2.4(c) that its kernel is G-invariant.

Therefore we may set U := ker(7r) and the claim follows.

(b) Prove that there is no direct sum decomposition of V' into irreducible G-invariant subspaces.

, then
every G-invariant K-subspace W of V' admits a G-invariant complement in V, i.e. a G-invariant
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Definition 3.5 (Completely reducible/semisimple representation | constituent)

A K-representation which can be decomposed into a direct sum of irreducible subrepresentations is
called completely reducible or semisimple. In this case, an irreducible subrepresentation occuring
in such a decomposition is called a constituent of the representation.

Corollary 3.6

If G is a finite group and K is a field such that char(K) 1 |G
completely reducible.

, then every K-representation of G is

Proof: Let p: G —> GL(V) be a K-representation of G. W.Lo.g. we may assume V # {0}.

- Case 1: p is irreducible = nothing to do v".

- Case 2: p is reducible. Thus dimg (V) = 2 and there exists an irreducible G-invariant K-subspace
0 # Vi £ V. Now, by Maschke's Theorem, there exists a G-invariant complement U < V, ie.
such that V = V; @ U. As dimg(V;) = 1, we have dimg(U) < dimg (V). Therefore, an induction
argument yields the existence of a decomposition

V=VieV,e--aV, (r=2)

of V, where V4,...,V, are irreducible G-invariant subspaces. m

Remark 3.7

(a) The hypothesis of Maschke’s Theorem requiring that char(K) 1 |G| is always verified if K is
a field of characteristic zero. E.g. if K =C,R,Q, ...

(b) The converse of Maschke's Theorem holds as well. It will be proved later on with more
appropriate tools.

(c) In the literature, a representation is called an ordinary representation if K is a field of
characteristic zero (or more generally of characteristic not dividing |GJ), and it is called a
modular representation if char(K) | |G|.

In Part | of these lecture notes we are going to restrict our attention to ordinary representation
theory and, most of the time, even assume that K is the field C of complex numbers.

Exercise 3.8 (Alternative proof of Maschke’s Theorem over the field C)

Assume K = C and let p: G —> GL(V) be a C-representation of G.

(a) Prove that there exists a G-invariant scalar product { , ): V x V — C, i.e. such that
{(g.u,g.v)y ={u,v)y YgeGVYuveV.

[Hint: consider an arbitrary scalar product on V, say (, ): V x V — C, which is not necessarily G-invariant.
Use a sum on the elements of G, weighted by the group order |G|, in order to produce a new G-invariant scalar
product on V]

(b) Deduce that every G-invariant subspace W of V admits a G-invariant complement.
[Hint: consider the orthogonal complement of W]



Chapter 2. The Group Algebra and Its Modules

We now introduce the concept of a KG-module, and show that this more modern approach is equivalent
to the concept of a K-representation of a given finite group G. Some of the material in the remainder of
these notes will be presented in terms of KG-modules. As we will soon see with our second fundamental
result, namely Schur’s Lemma, there are several advantages to this approach to representation theory.

Notation: throughout this chapter, unless otherwise specified, we let:
- G denote a finite group;
- K denote a field of arbitrary characteristic; and
-V denote a K-vector space such that dimg (V) < 0.

In general, unless otherwise stated, all groups considered are assumed to be finite and all K-vector
spaces [ modules over the group algebra considered are assumed to be finite-dimensional.

4 Modules over the Group Algebra

Lemma-Definition 4.1 (Group algebra)

The group ring KG is the ring whose elements are the K-linear combinations dec Agg with A5 € K,
and addition and multiplication are given by

Y hgg+ D ugg =D (Ag+ug)g and (D] Aeq) - (X mmh) = Y (Agm)gh

geG geG geC geCG heG g,heG

respectively. In fact KG is a K-vector space with basis G, hence a K-algebra. Thus we usually
call KG the group algebra of G over K rather than simply group ring.

Note: In Definition 4.1, the field K can be replaced with a commutative ring R. E.g. if R = Z, then
ZG is called the integral group ring of G.

Proof: By definition KG is a K-vector space with basis G, and the multiplication in G is extended by
K-bilinearity to the given multiplication - : KG x KG — KG. It is then straightforward to check that
KG bears both the structures of a ring and of a K-vector space. Finally, axiom (A3) of K-algebras (see
Appendix B) follows directly from the definition of the multiplication and the commutativity of K. ]

17
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Remark 4.2
Clearly 1xg = 1, dimg (KG) = |G|, and KG is commutative if and only if G is an abelian group.

Proposition 4.3

(@) Any K-representation p : G — GL(V) of G gives rise to a KG-module structure on V, where
the external composition law is defined by the map

KG x V — V
XgecAgg V) = (LgecA99) -V i= 2gec Agp(9)(v) -
(b) Conversely, every KG-module (V, +,-) defines a K-representation
pv: G — GL(V)
g = pv(g):V—V.vpy(g)v):=g-v

of the group G.

Proof: (a) Since V is a K-vectore space it is equipped with an internal addition + such that (V, +) is an
abelian group. It is then straightforward to check that the given external composition law defined
above verifies the KG-module axioms.

(b) A KG-module is in particular a K-vector space for the scalar multiplication defined for all A € K
and all ve V by

Avi=(Ag)-v.
——
eKG

Moreover, it follows from the KG-module axioms that py(g) € GL(V) and also that

pv(9192) = pv(g1) o pv(g2)

for all g1, g2 € G, hence py is a group homomorphism.
See [Exercise Sheet 2] for the details (Hint: use the remark below!). u

Remark 4.4

In fact in Proposition 4.3(a) checking the KG-module axioms is equivalent to checking that for all
g heG AeKandu,veV:

(1) (gh)-v=g-(h-v)
(2) 1g-v=
() g-(utv)=g-ut+g-v
(4) g-(Av) = A(g-v) = (Ag) v
or in other words, that the binary operation

GxV — vV
(g.v) = g-v:=p(g)v)
is a K-linear action of the group G on V. Indeed, the external multiplication of KG on V is just

the extension by K-linearity of the latter map. For this reason, sometimes, KG-modules are also
called G-vector spaces. See [Exercise Sheet 2| for the details.
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Lemma 4.5

Two representations p1 : G — GL(V4) and p, : G —> GL(V») are equivalent if and only if V4 =~ V;
as KG-modules.

Proof: If py ~ pp and o : V4 —> V5 is a K-isomorphism such that p,(g) = @ o p1(g) o @~ for each g € G,
then by Proposition 4.3(a) for every v € V4 and every g € G we have

g-a(v) = pAg)(a(v)) = a(pi(g)(v)) = al(g - v).

Hence a is a KG-isomorphism.
Conversely, if a : Vi — V5 is a KG-isomorphism, then certainly it is a K-homomorphism and for each
g € G and by Proposition 4.3(b) for each v € V, and each g € G we have

aopi(g)oal(v)=alpi(g)a (V) =alg-a™'(v)) =g -ala'(v)) =g-v=pag)(v),
hence p2(g) = a0 pi(g) o a ' for each g € G. |

Remark 4.6 (Dictionary)

More generally, through Proposition 4.3, we may transport terminology and properties from KG-
modules to K-representations of G and conversely.

This lets us build the following dictionary:

REPRESENTATIONS

MoDULES

K-representation of G

degree

homomorphism of representations
subrepresentation / G-invariant subspace
direct sum of representations Py, @pvz
irreducible representation

the trivial representation

the regular representation of G

Corollary 3.6 to Maschke’s Theorem:

If char(K) 1 |G|, then every K-represen-
tation of G is completely reducible.

KG-module

K-dimension

homomorphism of KG-modules
KG-submodule

direct sum of KG-modules V4 @ V>
simple (= irreducible) KG-module
the trivial KG-module K

the reqgular KG-module KG
Corollary 3.6 to Maschke’s Theorem:

If char(K) 1 |G
is semisimple.

, then every KG-module

Virtually, any result, we have seen in Chapter 1, can be reinterpreted using this translation table.
E.g. Property 2.4(c) tells us that the image and the kernel of homomorphisms of KG-modules are
KG-submodules, ...

In this lecture, we introduce the equivalence between representations and modules for the sake
of completeness. In the sequel we keep on stating results in terms of representations as much as
possible. However, we will use modules when we find them more fruitful. In contrast, the M.Sc.
Lecture Representation Theory will consistently use the module approach to representation theory.
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Exercise 4.7 (The dual representation)

Let p,, : G — GL(V) be a K-representation.

(a) Prove that the dual space V* := Homk (V, K) is endowed with the structure of a KG-module
via the left action

Gx V¥ — V*
(9.f)  — g.f

where (g.f)(v) :==f(g7'v) YV ve V.

(b) Prove the following assertion using module theoretic arguments: if p,, decomposes as a direct
sum py, EBpV2 of two subrepresentations, then p, . = Pyx D Py -
1 2

5 Schur’s Lemma and Schur’s Relations

Schur’s Lemma is a basic result concerning simple modules, or in other words irreducible representa-
tions. Though elementary to state and prove, it is fundamental to representation theory of finite groups.

Theorem 5.1 (SCHUR'S LEMMA)

(@) Let V, W be simple KG-modules. Then the following assertions hold.

(i) Any homomorphism of KG-modules ¢ : V. — V is either zero or invertible. In other
words Endgg (V) is a skew-field.

(i) If V 2 W, then Homgg(V, W) = 0.
(b) If K is an algebraically closed field and V is a simple KG-module, then

Endkg(V) = {Aldy [Ae K} = K.

Notice that here we state Schur’s Lemma in terms of modules, rather than in terms of representations,
because part (a) holds in greater generality for arbitrary unital associative rings and part (b) holds for
finite-dimensional algebras over an algebraically closed field.

Proof:

(a) First, we claim that every ¢ € Homkq(V, W)\{0} admits an inverse in Homgg(W, V).

Indeed, ¢ # 0 = kergp < V is a proper KG-submodule of V and {0} # Im¢ is a non-zero
KG-submodule of W. But then, on the one hand, ker ¢ = {0}, because V is simple, hence ¢ is
injective, and on the other hand, Im ¢ = W because W is simple. It follows that ¢ is also surjective,
hence bijective. Therefore, by Properties A.7, ¢ is invertible with inverse ¢~' € Homxg(W, V).

Now, (ii) is straightforward from the above. For (i), first recall that Endkg(V) is a ring (see

Notation A.8), which is obviously non-zero as Endkg (V) 2 Idy and Idy # 0 because V # 0 since
it is simple. Thus, as any ¢ € Endgg(V)\{0} is invertible, Endks (V) is a skew-field.
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(b) Let @ € Endkc(V). Since K = K, ¢ has an eigenvalue A € K. Let v € V\{0} be an eigenvector of
@ for A. Then (¢ — Aldy)(v) = 0. Therefore, ¢ — Aldy is not invertible and

@—Aldy €Endic(V) "2 o—Aldy =0 — @=Aldy .

Hence Endkg(V) < {Aldy | A € K}, but the reverse inclusion also obviously holds, proving the
claim.
|

Exercise 5.2

Prove that in terms of matrix representations the following statement holds:
Lemma 5.3 (Schur’s Lemma for matrix representations)

Llet R: G — GL,(K) and R' : G — GL,/(K) be two irreducible matrix representations. If
there exists A € M, »,»(K)\{0} such that AR'(g) = R(g)A for every g € G, then n = n’ and A
is invertible (in particular R ~ R’).

The next lemma is a general principle, which we have already used in the proof of Maschke’s Theorem,
and which allows us to transform K-linear maps into KG-linear maps.

Lemma 5.4

Assume char(K) 1 |G|. Let V, W be two KG-modules and let p,, : G — GL(V), p},, : G — GL(W)
be the associated K-representations. If ¢y : V — W is K-linear, then the map

’G’ ZPW Op\/(g_1)
geG

from V to W is KG-linear.

Proof: Same argument as in (3) of the proof of Maschke's Theorem: replace 7 by (s and apply the fact that a
G-homomorphism between representations corresponds to a KG-hmomorphism between the corresponding
KG-modules. ]

Proposition 5.5

Assume char(K) 1 |G|. Let p, : G — GL(V) and p,, : G — GL(W) be two irreducible K-
representations.

(@) If py, # py and ¢ : V — W is a K-linear map, then

ZPW Yopy(g™')=0.
geG

(b) Assume moreover that K = K and char(K) { n :=dimg V. If ¢y : V — V is a K-linear map,

then
Tr(y)
n

\G\ Yipv(glogopy(gh) = ldy .

geG
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Proof: Since p,, and p,, are irreducible, the associated KG-modules are simple. Moreover, by Lemma 5.4,
both in (a) and (b) the map ¢ is KG-linear. Therefore Schur’'s Lemma yields:

(@) ¢ =0 since V % W.

(b) (,71 = A-Idy for some scalar A € K. Therefore, on the one hand

)= 6 2T lpule) oo py(g™) = G T(w) = Te(w)

G
9 —Ti ()

and on the other hand N
Tr(g) =Tr(A-1dy) = ATr(ldy) =n - A,

()
: ]

n

hence A =

Next, we see that Schur’s Lemma implies certain "orthogonality relations" for the entries of matrix
representations.

Theorem 5.6 (ScHUR'S RELATIONS)
Assume char(K) t |G|. Let Q : G — GL,(K) and P : G — GL,(K) be irreducible matrix

representations.

(@) If P« Q, then %'dec P(g)riQ(g~");s=0forall1<r,i<mandall1<js<n.

(b) If K = K and char(K) { n, then ‘%'dec 0(9)ri0(g™")js = 1865 for all 1 < r,i,j,s < n.

Proof: Set V := K", W := K" and let p,, : G — GL(V) and p,;, : G — GL(W) be the K-representations
induced by Q and P, respectively, as defined in Remark 1.2. Furthermore, consider the K-linear map
¢ : V — W whose matrix with respect to the standard bases of V = K" and W = K" is the elementary

matrix

if..... 1 ..... =: E[jEmen(K)

J
(i.e. the unique nonzero entry of Ej; is its (i, j)-entry).

(@) By Proposition 5.5(a),

= pr Yopy(g ) =0
gGG

because P # Q, and hence p,, # p,,. In particular the (r, s)-entry of the matrix of J/ with respect
to the standard bases of V = K” and W = K" is zero. Thus,
1 -

geCG gelG

because the unique nonzero entry of the matrix Ej; is its (i, j)-entry.
(b) Now we assume that P = Q, and hence n =m, V = W, p,, = p,,. Then by Proposition 5.5(b),

o Ty 1ody ifi=j,
> = 2 dy = {7
|G|gerV pulg) == 7o if i .
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Therefore the (r, s)-entry of the matrix of LZ with respect to the standard basis of V = K" is
1 _ (1-|d\/) ifi=j,
_ E; 1 _ n rs
Again, because the unique nonzero entry of the matrix Ej; is its (i, j)-entry, it follows that
1 _
ﬁ Z 0(9)r:0(g 1)/5 =

geCG

1

n

5;0rs -

6 Representations of Finite Abelian Groups

23

In this section we give an immediate application of Schur’'s Lemma encoding the representation theory
of finite abelian groups over an algebraically closed field K whose characteristic is coprime to the order

of the group.

Proposition 6.1

K G-module is equal to 1.

Equivalently: any irreducible K-representation of G has degree 1.
Proof: Let V be a simple KG-module, and let p,, : G — GL(V) be the underlying K-representation (i.e.
as given by Proposition 4.3).

Claim: any K-subspace of V is in fact a KG-submodule.

Proof: Fix g € G and consider p, (g). By definition p,,(g) € GL(V), hence it is a K-linear endomorphism
of V. We claim that it is in fact KG-linear. Indeed, as G is abelian, V h € G, V v € V we have

and it follows that p,(g) is KG-linear, i.e. p,(g) € Endxc(V). Now, because K is algebraically
closed, by part (b) of Schur's Lemma, there exists A; € K (depending on g) such that

pyv(g) = Ag - ldy .

As this holds for every g € G, it follows that any K-subspace of V' is G-invariant, which in terms
of KG-modules means that any K-subspace of V is a KG-submodule of V.

To conclude, as V is simple, we deduce from the Claim that the K-dimension of V must be equal to 1.

Assume G is a finite abelian group, K = K and char(K) { |G|. Then, the K-dimension of any simple



Skript zur Vorlesung: Darstellungstheorie WS 2425, Leibniz Universitidt Hannover 24

Theorem 6.2 (DIAGONALISATION THEOREM)

Assume K = K and char(K) { |G|. Let p : G —> GL(V) be a K-representation of an arbitrary
finite group G. Fix g € G. Then, there exists an ordered K-basis B of V' with respect to which

g1 0:ocin 0

0, &
(p(9)) = R K

0 evvvnn. 0 e,

where n := dimk (V) and each ¢; (1 < i< n) is an o(g)-th root of unity in K.

Proof: Consider the restriction of p to the cyclic subgroup generated by g, that is the representation
Plgy 1<) — GL(V).

By Corollary 3.6 to Maschke’s Theorem, we can decompose the representation p\<g> into a direct sum of
irreducible K-representations, say
Pligy =Py, @ ®py,,

where V4,...,V, € V are {(g)-invariant. Since (g) is abelian dimg(V;) = 1 for each 1 < i < n by
Proposition 6.1. Now, if for each 1 < i < n we choose a K-basis {x;} of V;, then there exist ¢; € K
(1 < i< n)such that p,, (g) = €; and B:= (xq,...,x,) is an ordered K-basis of V such that

Finally, as g°(9) = 1, it follows that for each 1 < i < n,

e? = py(9)°? = py(9°P) = py,(16) = 1«

i

and hence ¢; is an o(g)-th root of unity. |

Scholium 6.3

Assume K = K, char(K) t |G| and G is abelian. If p : G — GL(V) is a K-representation
of G, then the K-endomorphisms p(g) : V. — V with g running through G are simultaneously
diagonalisable.

Proof: Same argument as in the previous proof, where we may replace "(g)" with the whole of G. |

Exercise 6.4 (On the existence of faithful representations)

Prove the following assertions.
(@) The regular C-representation of any finite group is faithful.
(b) Every finite simple group G admits a faithful irreducible C-representation.
[Hint: Decompose the regular representation into a direct sum of irreducible subrepresentations and use (a).]
() f G =G, x---x(,, is a product of finite cyclic groups of order nq,...,n, (r € Z-o), then
G admits a faithful C-representation of degree r.




Chapter 3. Characters of Finite Groups

We now introduce the concept of a character of a finite group. These are functions G — C, obtained
from the representations of the group G by post-composing with the trace map. Characters have many
remarkable properties, and they are the fundamental tools for performing computations in representa-
tion theory. They encode a lot of information about the group itself and about its representations in a
compact and efficient manner.

Notation: throughout this chapter, unless otherwise specified, we let:
- G denote a finite group;
- K := C be the field of complex numbers; and
-V denote a C-vector space such that dimc(V) < o0.

Unless otherwise stated, all groups considered are assumed to be finite and all C-vector spaces / mod-
ules over the group algebra considered are assumed to be finite-dimensional.

7 Characters

Definition 7.1 (Character, linear character)

Let p, : G — GL(V) be a C-representation. The character of py is the C-valued function
xy: G — C
g ~ xv(g)=Tr(py(9)) .

We also say that p,, (or the associated CG-module V) affords the character x,,. The degree of x,,
is the degree of p,,. If the degree of x,, is one, then x,, is called a linear character.

Remark 7.2

(@) Recall that in linear algebra the trace of a linear endomorphism ¢ may be concretely computed
by taking the trace of the matrix of ¢ in a chosen basis of the vector space, and this is
independent of the choice of the basis.

Thus to compute characters: choose an ordered basis B of V and obtain V g € G:

xv(9) =T (pu(9) = Tr ((pv(9)) 5)

25
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(b) For a matrix representation R : G — GL,(C), the character of R is then

Xxr: G — C
g — xglg):=Tr(R(g)) .
Example 3

The character of the trivial representation of G is the function 16 : G — C,g — 1 and is called
the trivial character of G.

Lemma 7.3

Equivalent C-representations afford the same character.

Proof: If p, : G — GL(V) and p,, : G — GL(W) are two C-representations, and a : V — W is an
isomorphism of representations, then

pw(g) =aopy(g)oa™ Vged.

Now, by the properties of the trace for any two C-endomorphisms B, y of V we have Tr(Boy) = Tr(yoB),
hence for every g € G we have

xw(9) =Tr (pw(9)) =Tr (aopy(g)oa™) =Tr(py(g) oo 0 a) =Tr(py(9)) = xv(9)-
=Id, [ |

Terminology / Notation 7.4

- Again, we allow ourselves to transport terminology from representations to characters. For
example, if py is irreducible (faithful, ...), then the character x\ is also called irreducible
(faithful, ...).

- We define Irr(G) to be the set of all irreducible characters of G, and Lin(G) to be the set of
all linear characters of G. (We will see below that Irr(G) is a finite set.)

Properties 7.5 (Elementary properties)

Let p,, : G — GL(V) be a C-representation and let g € G. Then the following assertions hold:
(@) xy(1g) = dimc V;
(b) xy(g) = €1+ ...+ €,, where €1,..., &, are o(g)-th roots of unity in C and n = dim¢ V;

(© Ixyv(9)l <xy(1c):

(d) xy(g7") = xy(9);

(e) if p, = Py, Dpy, is the direct sum of two subrepresentations, then x,, = Xv, + Xy, -

Proof:

(a) We have p,,(1¢) = Idy since representations are group homomorphisms, hence x, (1¢) = dimc V.

(b) This follows directly from the diagonalisation theorem (Theorem 6.2).
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(c) By (b) we have x,(g) = &1 + ...+ €,, where &1, ..., &, are roots of unity in C. Hence, applying
the triangle inequality repeatedly, we obtain that

(@) = ler ..+l < lei] -t len] =dimeV 2 %, (16).
—— ——

=1 =1

(d) Again by the diagonalisation theorem, there exists an ordered C-basis B of V and o(g)-th roots of

unity €1, ..., &, € C such that
&1 0: ....... 0
0 &
(pv(9)) g = VRTINS
. .0
0.-------0 &,
Therefore
61_1 0. vvvvnnn 0 g 0.vrn.. 0
0 &' : 0. & :
(Pv(9_1))3 = = |-
0 0
0.........: 0 5;1 0.-.conn. 0 &,
and it follows that x, (g"" ) =&+ ...+ & =& + ... T &, = x,(g).

(e) Forie {1,2} let B; be an ordered C-basis of V; and consider the C-basis B := By u B, of V. Then,
by Remark 3.2 for every g € G we have

(pw(g))& 0
(,0\/(9))3 = )
0 <sz(9>)52
hence xy,(9) = Tr (py(9)) = Tr (py,(9)) +Tr (py,(9)) = xv,(9) + X, (9) - -

Corollary 7.6

Any character of G is a sum of irreducible characters of G.

Proof: By Corollary 3.6 to Maschke’s theorem, any C-representation can be written as the direct sum of
irreducible subrepresentations. Thus the claim follows from Properties 7.5(e). |

Exercise 7.7 (Characters of quotient CG-modules)

Let V be a CG-module and let W < V be a CG-submodule. Denote by x,, x,, and Xv)w the
characters afforded by V, W and V//W respectively. Prove that x,, = x, + xv/w -

Notation 7.8
Recall from group theory (e.g. Algebra 11l or Einfiihrung in die Algebra) that a group G acts on
itself by conjugation via

GxG — G

(g.x) = gxg '=%.
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The orbits of this action are the conjugacy classes of G, we denote them by [x] := {9 | g € G},
and we write C(G) := {[x] | x € G} for the set of all conjugacy classes of G.

The stabiliser of x € G is its centraliser Cg(x) = {g € G | 9% = x} and the orbit-stabiliser theorem

yields
_ lal

X1

Moreover, a function f : G — C which is constant on each conjugacy class of G, i.e. such that
f(gxg=") = f(x) ¥V g,x € G, is called a class function (on G).

[Ca(x)]

Lemma 7.9

Characters are class functions.

Proof: Let py : G — GL(V) be a C-representation and let xy be its character. Again, because by the
properties of the trace we have Tr(B o y) = Tr(y o B) for all C-endomorphisms B, y of V, it follows that
for all g,x € G,

xv(gxg™") =Tr(pv(gxg™")) = Tr (pv(g)pv(x)pv(g)™")

Exercise 7.10 (Real-valued characters)

Let p, : G — GL(V) be a C-representation and let ), be its character. Prove the following
statements.

(a) If g € G is conjugate to g~ ', then x,,(g) € R.
(b) If g € G is an element of order 2, then x,,(g) € Z and x,/(g) = x,/(1) (mod 2).
(c) Prove or disprove the following claims.

(Claim 1) The character values of the symmetric group S, are real numbers for all n € Z-g.

(Claim 2) The character values of the alternating group A, are real numbers for all n € Z-g.

8 Orthogonality of Characters

We are now going to make use of results from the linear algebra on the C-vector space of C-valued
functions on G in order to develop further fundamental properties of characters.

&)tation 8.1

(1) Let F(G,C) := {f : G —> C | f function} denote the C-vector space of C-valued functions
on G. Clearly dim¢ F(G,C) = |G| because {3y : G —> C, h +— 044 | g € G} is a C-basis.

(2) Let CI(G) := {f € F(G,C) | f is a class function}. This is clearly a C-subspace of F(G,C)
and it is called the space of class functions on GG. We have dimc Cl(G) = |C(G)| as a C-basis
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of this subspace is given by the set {1¢ | C € C(G)} of all indicator functions of the conjugacy
classes of G.

Proposition 8.2

The binary operation

(e F(GC)xF(GC) — C L
(f1.12) = (hh)g = g Xgea 11(9)2(9)

is a scalar product on F(G,C).

Proof: It is straightforward to check that {, ) is sesquilinear and Hermitian (Exercisel!); it is positive definite
because for every f € F(G,C),

(fi e = |G| > flg ‘q Z|f

geCG geG
and moreover {f,f). =0 if and only if f = 0. |

&emark 8.3

Obviously, the scalar product (, ). restricts to a scalar product on CI(G). Moreover, if f; is a
character of G, then by Property 7.5(d) we can write

(b = }5 }jfa

geC geG

The next theorem is the third key result of this lecture. It tells us that the irreducible characters of a
finite group form an orthonormal system in CI(G) with respect to the scalar product (, ).

Theorem 8.4 (1sT ORTHOGONALITY RELATIONS)

If p, : G— GL(V) and p, : G — GL(W) are two irreducible C-representations affording the
characters y,, and x,, respectively, then

1 _ 1 ifpy ~pu,
<XV:XW>G:@ZX\/(Q)XW(9 1)2 {0 if Y W
geG tpy %pW'

Proof: Choose ordered C-bases E := (eq, ..., e,) and F = (fy,..., fm) of V and W respectively. Then for
each g € G write Q(g) := (pv(g)) and P(q) := (py(q)),- If py # py, compute

F
Ot xtwde = 76 DxAahnle™) = 15 ST (0(9)) Tr (Plg™)
geG | | geG
= (0@ (X Py
| | geG =1 j=1
-0 i X 0ahPlg )y 0
i=1j=1 geCG

=0 by (a) of Schur’s Relations
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and similarly if p,, ~ p,, then by Lemma 7.3, we may assume w.L.o.g. that W =V, so P = Q and we

obtain
nom 1 » 1
Ovxve =20 —= > 0(9)iQ(g™ "), = —=1.
- |G| ~ p
i=1j=1 geG i=1
=%6[j6[j by (b) of Schur’s Relations u

9 Consequences of the 1st Orthogonality Relations

In this section we use the 1st Orthogonality Relations in order to deduce a series of fundamental
properties of the (irreducible) characters of finite groups.

Corollary 9.1 (Linear independence)

The irreducible characters of G are C-linearly independent.

Proof: Assume >.;_; Aix; = 0, where x;, ..., x, are pairwise distinct irreducible characters of G, Ay,..., As €
C and s € Z-y. Then the 1st Orthogonality Relations yield

S S
0= <Z /\iXier>G = E)V <Xi'Xj>C =4
i=1 =1 S~

=0

for each 1 < j <'s. The claim follows. ]

Corollary 9.2 (Finiteness)

There are at most |C(G)| irreducible characters of G. In particular, there are only a finite number
of them.

Proof: By Corollary 9.1 the irreducible characters of G are C-linearly independent. By Lemma 7.9 irrre-
ducible characters are elements of the C-vector space CI(G). Therefore there exists at most dim¢ C{(G) =
|C(G)| < oo of them. |

Corollary 9.3 (Multiplicities)

Let p, : G — GL(V) be a C-representation and let p,, = py, @@ py, be a decomposition of
py into irreducible subrepresentations. Then the following assertions hold.

(a) If py : G — GL(W) is an irreducible C-representation of G, then the multiplicity of p, in
py, @@ py, is equal to {xy, Xy )¢

(b) This multiplicity is independent of the choice of the chosen decomposition of p,, into irre-
ducible subrepresentations.

Proof: (a) W.lLo.g., we may assume that we have chosen the labelling such that

Py =Py, @ - @py@py, O Dpy,
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where py, ~py V1 <i<landp, # p, VI+1<j<s Thusy, = x, V1 <i<lby
i j i
Lemma 7.3. Therefore the 1st Orthogonality Relations yield

!
Xvi xwre = ;<X\4:XW>G Z <Xv Xw)G = Z<XW Xwog + Z <Xv xwye = L.

j=1+1 e j=1+1 %/—’
(b) Obvious, since {x\., x> depends only on V and W, but not on the chosen decomposition. ]

We can now prove that the converse of Lemma 7.3 holds.

Corollary 9.4 (Equality of characters)

Let p, : G — GL(V) and p,, : G — GL(W) be C-representations with characters x,, and x,
respectively. Then,

Xv=Xw <=  Pv~Pw-

Proof: “<": The sufficient condition is the statement of Lemma 7.3.

“=": To prove the necessary condition decompose p,, and p,, into direct sums of irreducible subrepre-
sentations

Pv:PVLW@"'@P\/LM@”'@PV D Dpy

- m _,_a
all ~py, all ~pv,
pW :pm/11 @@pmp1 @@pW51 ®®pW5p5’

~—

all ~pv all ~py,

where m;,p; = 0 for all 1 < i < s and the Py, 's are pairwise non-equivalent irreducible C-
representations of G. (Some of the m;, p;'s may be zero!) Now, as we assume that x,, = xy, for
each 1 < i < s Corollary 9.3 yields

m; = <XV!X\4>G = <XW!XV,>G = Pi.
hence p, ~ py- |

Corollary 9.5 (Irreducibility criterion)

A C-representation p,, : G — GL(V) is irreducible if and only if {x,, x, )¢ = 1.

Proof: “=": holds by the 1st Orthogonality Relations.
“<": As in the previous proof, write

Py =Py, @ Dpy, D Dpy D Dpy,,
\_—/____/

S,mg
%,—z
all ~pv, all ~py

where m; = 1 for all 1 < i < s and the pvs are pairwise non-equivalent irreducible C-
representations of G. Then, using the assumption, the sesquilinearity of the scalar product and the
1st Orthogonality Relations, we obtain that

S S
1T=Xqvixv)e = Z mz2<leeri>c = Z m?-
i=1 %z—“q i=1

Hence, w.lLo.g. we may assume that mi =1Tand m; =0V 2 < i< s, sothatp, = py, is irreducible. W
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Eeorem 9.6

The set Irr(G) is an orthonormal C-basis (w.r.t. {, ).) of the C-vector space Cl(G) of class functions
on G.

Proof: We already know that Irr(G) is a C-linearly independent set and also that it forms an orthonormal
system of CI(G) w.rt. {, ). Hence it remains to prove that Irr(G) generates CI(G) as a C-vector space.
So let X := (Irr(G))¢ be the C-subspace of CI(G) generated by Irr(G). It follows that

ClG)=XaXxt

where X denotes the orthogonal of X with respect to the scalar product {, ). Thus it is enough to

prove that X1 = 0. So let f € X, setf := 2.4 f(g)g € CG and we prove the following assertions:

(1) f € Z(CG) (the centre of CG): let h € G and compute

hih™ = > F(g)hg - h™" =gt Zf Z )s=1.
seG

geC seG —1(s)

Hence hf = fh and this equality extends by C-linearity to the whole of CG, so that f € Z(CG).

(2) If V is a simple CG-module with character y,, then the external multiplication by f on V is scalar

multiplication by %(xv, )¢ € C: first notice that the external multiplication by fonV, ie. the map

f~—:V—>V,v'—>7-v

is CG-linear (i.e. an element of Endcg(V)). Indeed, for each x € CG and each v € V we have

f(x-v)=(fx)-v=(xf)-v=x-(fv)

because f € Z(CG). Therefore, by Schur’'s Lemma, there exists a scalar A € C such that fo—=Aldy.
Now, setting n := dimc(V), we have
1 1 1 1 — |G
A= —Tr(Aldy) = fTrf — =E§ (mult. by g on V) = ;gf = Do

=xv(9)

(3) If V is a simple CG-module with character x,, then the external multiplication by f on V is zero:

indeed, (x,, f)c = 0 because f € X* and the claim follows from (2).

(4) f = 0: indeed, as the external multiplication by f is zero on every simple CG-module, it is zero on

every CG-module, because any CG-module can be decomposed as the direct sum of simple submodules
by the Corollary to Maschke's Theorem. In particular, the external multiplication by f is zero on CG.
Hence

0=F-1cc=F=> flg)g
geCG

and we obtain that f(g) = 0 for each g € G because G is a C-basis of CG. But then f(g) = 0 for each
g € G and it follows that f = 0. u

The theorem now gives us the precise number of distinct irreducible characters.

Corollary 9.7

The number of pairwise distinct irreducible characters of G is equal to the number of conjugacy
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classes of G. In other words,

[Irr(G)] = |C(G)]-

Proof: By Theorem 9.6 the set Irr(G) is a C-basis of the C-vector space CI(G) of class functions on G.
Hence,

[1rr(G)| = dimc Cl(G) = |C(G)]
where the second equality holds by Notation 8.1. ]

Corollary 9.8
Let f € CI(G). Then the following assertions hold:

(a) = erlrr(G)<f'X>GX;

(b) <f' f>G = erlrr(C)<f' X>ZG'

(c) fis a character <= (f, x)r€Z>0 V x € Irr(G); and
(d) felrr(G) < fis a character and {f,f). = 1.

Proof: (a)+(b) hold for any orthonormal basis with respect to a given scalar product.

(c) '=": If f is a character, then by Corollary 9.3 the complex number {f, x) is the multiplicity of x
as a constituent of f for each x € Irr(G), hence a non-negative integer.

'<": If for each x € Irr(G), {f, x)c =: my € Zo, then f is the character of the representation
My
p= @O Drkx
x€lrr(G) j=1

where p(x) is a C-representation affording the character .

(d) The necessary condition is given by the 1st Orthogonality Relations. The sufficient condition follows
from (b) and (c). u

Exercise 9.9 (Character of the dual representation)

(a) Let p, : G — GL(V) be a C-representation with character x, . Prove using character-
theoretic arguments that:
(i) the character of the dual C-representation p, .« is xy« = Xy :
(it) py is trreducible if and only if p, /4 is;
(iit) if p,, decomposes as a direct sum p,, @ p,, of two C-subrepresentations, then p, . is

equivalent to p . @ P« -
1 2

(b) Determine the duals of the 3 irreducible representations of S3 given in Example 2(d), up to
isomorphism.
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Exercise 9.10 (Change of the base group)

Let ¢ : G — Gq be a homomorphism of groups between two finite groups G, and Gj. Let
p: Gy —> GL(V) be a C-representation affording the character y. Prove the following assertions:

(i) x o ¢ is a character of Gy, afforded by the C-representation p o ¢;

(it) if x € lrr(Gq) and ¢ is surjective, then x o ¢ € Irr(Gy).

Show by an example, that y o ¢ is, in general, not irreducible.

Exercise 9.11 (Dimension of the fixed-point space)

Let V' be a CG-module affording the character y,, . Consider the C-subspace of fixed points under
the action of G, thatis V¢ :={ve V |g-v=vVYge G}. Prove that

_ 1
dime VE = = > xv(9)
Gl =
in two different ways:

1. considering the scalar product of x|, with the trivial character 1¢;

2. seeing V¢ as the image of the projector 7: V — V, v > ﬁ dec g-v.

10 The Reqular Character

Recall from Example 1(d) that a finite left G-set X gives rise a permutation representation

px: G — GL(V)
g = px(g):V—V, e —egx

where V is a C-vector space with basis {e, | x € X} (i.e. indexed by the set X). Given g € G write
Fixx(g) := {x € X | g - x = x} for the set of fixed points of g on X.

Proposition 10.1 (Character of a permutation representation)

Let X be a G-set and let x, denote the character afforded by the associated permutation repre-
sentation p,. Then

xx(g) =|Fixx(g)] VgeG.

Proof: Let g € G. The diagonal entries of the matrix of p,(g) expressed in the basis B := {e, | x € X} are:

1 ifg-x=x
((px(g))B)XX= {o g x%x VxeX.

Hence taking traces, we get x,(g) = X, cx ((px(g))B>XX = | Fixx(g)|. |

For the action of G on itself by left multiplication, by Example 1(d), py = preq is the regular represen-
tation of G. In this case, we obtain the values of the reqular character.
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Corollary 10.2 (The regular character)

Let X,oq denote the character of the regular representation preq of G. Then

_)IGl ifg=1g,
Xreg(g) B {0 otherwise.

Proof: This follows immediately from Proposition 10.1 since Fixg(1g) = G and Fixg(g) = & for every
ge G\{lc). n

Theorem 10.3 (Decomposition of the reqular representation)

The multiplicity of an irreducible C-representation of G as a constituent of p.,4 equals its degree.
In other words,

Xreg = Z x(Mx.

Xx€Elrr(G)

Proof: By Corollary 9.3 we have x,q = >, cir(6)Xreq: X0 X Where for each x € Irr(G),

1 — |G
tearX06 = 701 O ea(9) X() = 1o (1) = x(1).
Gl & L) c
=61g|G|
by Cor. 10.2 [ ]

Remark 10.4

The theorem tells us that each irreducible C-representation (considered up to equivalence) occurs
with multiplicity at least one in a decomposition of the regular representation into irreducible
subrepresentations.

Corollary 10.5 (Degree formula)

The order of the group G is given in terms of its irreducible character by the formula

al= Y x().

Xx€Elrr(G)

Proof: Evaluating the regular character at 1 € G yields

Gl = Xeg(1) = D) x(Dx(1) = x(1)?.
x€lrr(G) x€lrr(G) [ ]

Exercise 10.6

Use the degree formula to give a second proof of Proposition 6.1 when K = C. In other words,
prove that if G is a finite abelian group, then Irr(G) = Lin(G).




Chapter 4. The Character Table

In Chapter 3 we have proved that for any finite group G the equality | Irr(G)| = |C(G)| =: r holds. Thus
the values of the irreducible characters of G can be recorded in an r x r-matrix, called the character
table of G. The entries of this matrix are related to each other in subtle manners, many of which are
encapsulated in the 1st Orthogonality Relations and their consequences, as for example the degree
formula. Our aim in this chapter is to develop further tools and methods to compute character tables.

Notation: throughout this chapter, unless otherwise specified, we let:
- G denote a finite group;
- K := C be the field of complex numbers;
(G| = |C(G)] =
- rr(G) = {x;.-.., x,} denote the set of pairwise distinct irreducible characters of G;

- C1 = [g1],...,C = [g,] denote the conjugacy classes of G, where g1,..., g, is a fixed set of
representatives; and

- we use the convention that y; =1 and gy = 1€ G.

In general, unless otherwise stated, all groups considered are assumed to be finite and all C-vector
spaces [/ modules over the group algebra considered are assumed to be finite-dimensional.

11 The Character Table of a Finite Group

Definition 11.1 (Character table)

The character table of G is the matrix X(G) := (Xz(gj)> eM(C).
if

Example 4 (The character table of a cyclic group)

Let G ={g | g" = 1) be cyclic of order n € Z-. Since G is abelian,
Irr(G) = {linear characters of G}

Irr(G)| = |G| = n as each conjugacy class is a singleton:

by Proposition 6.1. Moreover,

VIi<j<r=n: Cjz{gj}andwesetgj:zgf_1.

36
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Let { be a primitive n-th root of unity in C, so that {{' | 1 < i < n} are all the n-th roots of unity.
Now, each x; : G — C* is a group homomorphism and is determined by x;(g), which has to be an
n-th root of 1¢. Therefore, we have n possibilities for x;(g). We set

xi(g)=¢"" vi<i<n = x(g)=C""Y vi<i<n0<j<n-—1
Thus the character table of G is

X(@) = (31099 12izy = (l0™) 121z = (€707),
<j<n <j<n

(<
J<

which we visualise as follows:

1 g 92 gnf1
X =1c| 1 1 1 R
w» |1 ¢ @ ..
X3 1 52 54 o 52(n71)
X, 1 (n—1 (2(n—1) o C(n—1)2

Ex

ample 5 (The character table of S3)

Let now G := S3 be the symmetric group on 3 letters. Recall from Algebra I/II that the conjugacy
classes of S3 are

Ci={Id}, G = {(12),(13),(23)}, G = {(123),(132))

G| =1,|G| =3,

Gl =2.

= r=3,

In Example 2(d) we have exhibited three non-equivalent irreducible matrix representations of Ss,
which we denoted p;, p,, p;. For each 1 < i < 3 let x; be the character of p; and n; be its degree,
so that n1 = n = 1 and n3 = 2. Hence

n?+n3+n3=6=|G|.

Therefore, the degree formula tells us that p,, p,, p; are all ‘ Id (12) (123)

the irreducible matrix representations of S3, up to equivalence. 1 1 1
o : X1

We note that n1 = ny = 1, n3 = 2 is in fact the unique v |1 R 1

solution (up to relabelling) to the equation given by the degree X | 2 1

formula! Taking traces of the matrices in Example 2(d) yields

In

the character table of Ss.

the next sections we want to develop further techniques to compute character tables of finite groups,

before we come back to further examples of such tables for larger groups.

Ex

ercise 11.2

Compute the character table of the Klein-four group G x G, and of G5 x G x C,. Compute the
character table of an arbitrary finite abelian group.
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12 The 2nd Orthogonality Relations

The 1st Orthogonality Relations provide us with orthogonality relations between the rows of the char-
acter table. They can be rewritten as follows in terms of matrices.

Exercise 12.1

Let G be a finite group. Set X := X(G) and

\Colan)| Ocveeennnn 0
0 |Ca(g2)]
Coe = e M.(C)
0
[ A 0 |Ca(g))

Use the Orbit-Stabiliser Theorem in order to prove that the 1st Orthogonality Relations can be

rewritten under the form .
XC X" =1,,

where X' denotes the transpose of the complex-conjugate X of the character table X of G.
Deduce that the character table is invertible.

There are also some orthogonality relations between the columns of the character table. These can
easily be deduced from the 1st Orthogonality Relations given above in terms of matrices.

Theorem 12.2 (2nd Orthogonality Relations)

With the notation of Exercise 12.1 we have

XX =cC.
In other words,
i -—6-|G|—6-~C i V1<i,j<
Z x(gi)x(g)) = Mgl ~ ij|Ca(gi)] sSLfsTr.

Xx€Elrr(G)

Proof: Taking complex conjugation of the formula given by the 1st Orthogonality Relations (Exercise 12.1)

yields:
xc'X"=1, —  XCc X" =}

. . . o 4 - -1
Now, since X is invertible, so are all the matrices in the above equations and hence X™ = (XC~")™".

It follows that - — o

X"X=(XCT")"X=CX X=C.
The second formula is now obtained by considering the entry (i, j) in the above matrix equation for all
1<ij<r |

Exercise 12.3

Prove that the degree formula can be read off from the 2nd Orthogonality Relations.
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13 Tensor Products of Representations and Characters

Tensor products of vector spaces and matrices are recalled/introduced in Appendix C. We are now going
to use this construction to build products of characters.

Proposition 13.1

Let G and H be finite groups, and let p, : G — GL(V) and p,, : H — GL(W) be C-
representations with characters x,, and x,, respectively. Then

py®py: GxH — GLV®cW)
(g.h) = (py®py)(g. h):=py,(g9)®py(h)

(where p\,(g) ® py(h) is the tensor product of the C-endomorphisms p,,(g) : V — V and py, (h) :
W — W as defined in Lemma-Definition C.4) is a C-representation of G x H, called the tensor
product of p,, and p,,, and the corresponding character, which we denote by Xv@o W is

Xveew = Xv  Xw

where xy, - x/(g,h) :== x,(9) - xyw(h) ¥ (g, h) e G x H.

Proof: First note that p, ® p,, is well-defined by Lemma-Definition C.4 and it is a group homomorphism
because

(Pv ® pw)(g192, hiha)[v @ w] = (py(g9192) ® py (h1h2))[v @ w]
= pv(9192)[v] ® py (h1h2)[w]
= pv(91) © py(g2)[v] ® pw (1) © py (h2)[w]
= pv(91) ® pw (h1)[py(92)[v] ® py (ha)[w]]
= (pv(91) ® pw(h1)) © (pv(92) ® py (h2))[v @ W]
= (bv ® pw) (g1, h1) o (py ® pw) (g2, h2)[v @ w]

vV g1,92€ G, hi,h, e H, ve V, we W. Furthermore, for each g € G and each he H,
Xvaw(9.h) =Tr ((py ® pw)(g. h)) = Tr (py(9) ® pw(h)) = Tr (py(9)) - Tr (pw(h)) = xv(9) - xw(h)

by Lemma-Definition C.4, hence xyg_y = xv - Xw- |

Remark 13.2

The diagonal inclusion ¢t : G — G x G,g — (g,g) of G in the product G x G is a group
homomorphism with ((G) =~ G. Therefore, if G = H, then

G—>GxG“C,g—(9.9)— xv(g) xw(g)

becomes a character of G, which we also denote by x, - x; -

Corollary 13.3
If G and H are finite groups, then Irr(G x H) = {x - ¢ | x € Irr(G), Y € Irr(H)}.

Proof: [Exercise]. Hint: Use Corollary 9.8(d) and the degree formula. |
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Exercise 13.4

(@) f A, x €lrr(G) and A(1) =1, then A- x € Irr(G).

(b) The set Lin(G) = {x € Irr(G) | x(1) = 1} of linear characters of a finite group G forms a
group for the product of characters.

14 Normal Subgroups and Inflation

Whenever a group homomorphism G — H and a representation of H are given, we obtain a represen-
tation of G by composition. In particular, we want to apply this principle to normal subgroups N < G
and the corresponding quotient homomorphism, which we always denote by 7 : G — G/N, g — gN.

We will see that by this means, copies of the character tables of quotient groups of G all appear in the
character table of G. This observation, although straightforward, will allow us to fill out the character
table of a group very rapidly, provided it possesses normal subgroups.

Definition 14.1 (Inflation)

Let NG and let 71 : G — G/N,g — gN be the quotient homomorphism. Given a C-
representation p: G/N — GL(V), we set

Inf& \(p) := pom:G—> GL(V).

This is a C-representation of G (see Exercise 9.10), called the inflation of p from G/N to G.

Note that some texts also call Infg/,\,(p) the lift or the restriction of p along .

Remark 14.2

(a) If the character afforded by p is x, then by Exercise 9.10(i), the character afforded by Infg/N(p)
is Infg/N(X) = y o ;1. We also call it the inflation of ¥ from G/N to G. Clearly, the values
of Infg/N(X) are given by the formula

Inf& N (X)(9) = x(gN)  VgeG.

(b) By Exercise 9.10(iii), if p (resp. x) is irreducible, then so is Infg/N(p) (resp. Infg/N(X)).
Exercise 14.3

Let N <G and let p : G/N — GL(V) be a C-representation of G/N. Compute the kernel of
Infg/N(p) provided that p is faithful.

Definition 14.4 (Kernel of a character)

The kernel of a character x of G is ker(x) :={ge G| x(g9) =x(1)}.
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Example 6

(@) x = 1¢ the trivial character = ker(x) = G.

(b) G = S3, x = x2 the sign character = ker(x) = C; u G5 = {(123)); whereas ker(x3) = {1}.
(See Example 5.)

mma 14.5

Let p: G —> GL(V) be a C-representation of G affording the character (. Then ker(¢) = ker(p),
thus it is a normal subgroup of G.

Proof: [Exercise| |

Theorem 14.6

Let N < G. Then

Infg/,\/: {characters of G/N} —> {chcaracters g of G| N <ker(y)}
X = Infg N (0

is a bijection and so is its restriction to the irreducible characters

Infg o Ir(G/N)  —  {elr(G) | N < ker(y)}
X — |”fg/N(X)~

Proof: First we prove that the first map is well-defined and bijective.

- Let x be a character of G/N. By Remark 14.2, N is in the kernel of Infg/N(X), hence the first map
is well-defined.

- Now let ¢y be a character of G with N < ker(¢/) and assume ¢ is afforded by the C-representation
p:G— GL(V).

G —2— aLv) By Lemma 14.5 we have ker(¢)) = ker(p) = N. Therefore, by the
ﬂl O//" universal property of the quotient, p induces a unique C-representation
o7 3P p: G/N — GL(V) with the property that po T = p.
G/N
Letting x be the character afforded by p, it follows that p = Infg/N(f)) and ¢ = Infg/N(X). Thus
the 1st map is surjective. Its injectivity is clear (e.g. by Remark 14.2).

The second map is well-defined by the above and Exercise 14.3(a). It is injective because it is just the
restriction of the 1st map to the Irr(G/N), whereas it is surjective by the same argument as above as the
constructed representation p is clearly irreducible if p is, as po 7w = p. |

Exercise 14.7

Let G be a finite group. Prove that if N < G, then

N = ﬂ ker(x) .

x€elrr(G)
N<ker(x)
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It follows immediately from the above exercise that the lattice of normal subgroups of G can be read
off from its character table. The theorem also implies that it can be read off from the character table,
whether the group is abelian or simple.

Corollary 14.8

(@) Inflation from the abelianization induces a bijection
Infg/c,: Irr(G/G") ———— Lin(G) .

In particular, G has precisely |G : G| linear characters.

(b) The group G is abelian if and only if all its irreducible characters are linear.

Proof:

(a) First, we claim that if ¢ € Lin(G), then G’ is in its kernel. Indeed, if (1) =1, then ¢y : G — C*
is a group homomorphism. Therefore, as C* is abelian,

Y(lg, h]) = Ylghg™'h™") = ¢(g)p(h)(g)~ ()" = d(g)(g) ™ (h)g(h)~" =1
for all g, h € G, and hence G’ ={[g, h] | g, h € G) < ker(x). In addition, any irreducible character
of G/G' is linear by Proposition 6.1 because G/G’ is abelian. Thus Theorem 14.6 yields a bijection

7(G/G) = Lin(G/G') — = (¢ € In(G) | &' < ker(y)} = Lin(G)

as required.

(b) The group G is abelian if and only if G/G’ = G, which happens if and only if Infg/c, = Id. Hence,
the claim follows from (a). u

Corollary 14.9
A finite group G is simple <= x(g) # x(1) Vge G\{1} and ¥ x € Irr(G)\{1¢}.

Proof: [Exercise] |
Exercise 14.10
Compute the complex character table of the alternating group A4 through the following steps:

1. Determine the conjugacy classes of A (there are 4 of them) and the corresponding centraliser
orders.

2. Determine the degrees of the 4 irreducible characters of Ajs.
3. Determine the linear characters of Aj.

4. Determine the non-linear character of A4 using the 2nd Orthogonality Relations.

To finish this section we show how to compute the character table of the symmetric group S4 combining
several of the techniques we have developed in this chapter.
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Example 7 (The character table of Ss)

Again, the conjugacy classes of S are given by the cycle types. We fix
G={ld}, G=[(12)] G=[123)], G=[12)34)], G =[(1234)]

= r=5|G|=11G|=6,|G|=8,|C|=3,|G|=6.

(G)| = |C(G)| =5 and as always we may assume that x, = 1¢ is the trivial character.

Recall that V4 = {Id, (1 2)(3 4),(1 3)(2 4),(1 4)(2 3)} < S4 with S4/V4 = S3 (seeAlgebra!).
Therefore, by Theorem 14.6 we can "inflate" the character table of S4/V4 =~ S3 to S4 (see Example 5

for the character table of S3). This provides us with three irreducible characters x;, x, and x5 of
542

Id (12) (123) (12)34) (1234
Colgn| [24 4 3 8 1
Xi 1 1 1 1 1
X 1 -1 1 1 -1
X3 2 0 -1 2
Xa
X5

Here we have computed the values of x, and x; using Remark 14.2 as follows:

- Inflation preserves degrees, hence it follows from Example 5 that x,(Id) = 1 and x;(Id) = 2.
(Up to relabelling!)

- As Gy =[(12)(34)] < V4, (12)(34) €ker(x;) for i =2,3 and hence x,((12)(34)) =1 and
x3((12)(34)) =2

- By Remark 14.2 the values of x, and x5 at (1 2) and (1 2 3) are given by the corresponding
values in the character table of S3. (Here it is enough to argue that the isomorphism between
S4/V4 and S3 must preserve orders of elements, hence also the cycle type in this case.)

- Finally, we compute that (1234) = (12) € S4/V4, hence x;(1 2 3 4)) = x,((1 2)) for
i=23.

Therefore, it remains to compute x, and xs. To begin with the degree formula yields

5
2oxld? =24 = x(ld) +xs5(1d)* =18 = x(1d) = xs(1d) = 3.
i=1

Next, the 2nd Orthogonality Relations applied to the 3rd column with itself read

)]

25] (123)x((123)) 2 (123)x((123)7") = |Cs((123))] =3,

hence 1+ 1+ 1+ x,((123))? + x5(123))? = 3 and it follows that x,((123)) = x5((123)) = 0.
Similarly, the 2nd Orthogonality Relations applied to the 2nd column with itself / the 4th column
with itself and the 5th column with itself yield that all other entries squared are equal to 1, hence
all other entries are +1.
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The 2nd Orthogonality Relations applied to the 1st and 2nd columns give the 2nd column, i.e.
X4((12)) =1 and x5((12)) = —1 (up to swapping x, and xs).
Then the 1st Orthogonality Relations applied to the 3rd and the 4th row yield

T2 ICcsz_c/kHX3(gk)X4(gk) - %*%ﬂ(“ 2)34)) = x((12)(34)) = 1.

Similar with the 3rd row and the 5th row: x5((1 2)(3 4)) = —1. Finally the 1st Orthogonal-
ity Relations applied to the 1st and the 4th (resp. 5th) row yield x,((1 2 3 4)) = —1 (resp.
X5((1234)) =1). Thus the character table of Sy is:

Id (12) (123) (12)34) (1234
1Calgo)] | 24 4 3 8 4

X1 T 1 1 1 1

X 1 1 1 1

X3 2 0 -1 2 0

X4 3001 1 1

X5 3 0 -1 1

Remark 14.11

Two non-isomorphic groups can have the same character table. E.g.: Qg and Dg, but Qg % Ds.
Thus, the character table does not determine:

the group up to isomorphism;

the full lattice of subgroups;
e the orders of elements.

Exercise 14.12
Compute the character tables of Dg and Qs.

[Hint: In each case, determine the commutator subgroup and deduce that there are 4 linear characters.]

Exercise 14.13 (The determinant of a representation)

If p: G —> GL(V) is a C-representation of G and det : GL(V) — C* denotes the determinant
homomorphism, then we define a linear character of G via

det, := detop: G — C*,
called the determinant of p. Prove that, although the finite groups Dg and Qg have the same

character table, they can be distinguished by considering the determinants of their irreducible
C-representations.
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Exercise 14.14

1

3.
4.
5

Prove the follwing assertions:
(a) If G is a non-abelian simple group (or more generally if G is perfect, i.e. G = [G, G]), then
the image p(G) of any C-representation p : G — GL(V) is a subgroup of SL(V).

(b) No simple group G has an irreducible character of degree 2.

Assume that G is simple and p : G —> GL,(C) is an irreducible matrix representation of G with character y and
proceed as follows:

Prove that p is faithful and G is non-abelian.
Determine the determinant det, of p.
Prove that |G| is even and G admits an element x of order 2.

Prove that (x) <t G and conclude that assertion (b) holds.



Chapter 5. Integrality and Theorems of Burnside's

The main aim of this chapter is to prove Burnside’s p°q® theorem, which provides us with a solubility
criterion for finite groups of order p?q® with p, g prime numbers, which is extremely hard to prove
by purely group theoretic methods. To reach this aim, we need to develop techniques involving the
integrality of character values and further results of Burnside's on the vanishing of character values.

Notation: throughout this chapter, unless otherwise specified, we let:
- G denote a finite group;
- K := C be the field of complex numbers;
- 1rr(G) == {xy, ..., x,} denote the set of pairwise distinct irreducible characters of G;

- C1 = [g1],...,C- = [g,] denote the conjugacy classes of G, where g1,..., g, is a fixed set of
representatives; and

- we use the convention that x; = 1 and g1 = 1€ G.

In general, unless otherwise stated, all groups considered are assumed to be finite and all C-vector
spaces [ modules over the group algebra considered are assumed to be finite-dimensional.

15 Algebraic Integers and Character Values

First we investigate the algebraic nature of character values.

Recall: (See Appendix D for details.)
An element b € C which is integral over Z is called an algebraic integer. In other words, b € C is an
algebraic integer if b is a root of a monic polynomial f € Z[X].

Algebraic integers have the following properties:

- The integers are clearly algebraic integers.
- Roots of unity are algebraic integers, as they are roots of polynomials of the form X" —1 € Z[X].

- The algebraic integers form a subring of C. In particular, sums and products of algebraic integers
are again algebraic integers.

- If b e Q is an algebraic integer, then b € Z. In other words {b € Q | b algebraic integer} = Z.

46
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Corollary 15.1

Character values are algebraic integers.

Proof: By the above, roots of unity are algebraic integers. Since the algebraic integers form a ring, so are
sums of roots of unity. Hence the claim follows from Property 7.5(b). ]

16 Central Characters

We now extend representations/characters of finite groups to "representations/characters" of the centre
of the group algebra CG in order to obtain further results on character values.

Definition 16.1 (Class sums)

The elements 6, = deq ge CG (1 < j <r) are called the class sums of G.

Lemma 16.2
The set of all class sums {6/ |1 <j < r}isaC-basisof Z(CG). In other words, Z(CG) = Dj_; c&,.

Proof: Notice that the class sums are clearly C-linearly independent in the group algebra CG because the
group elements are. Hence, we do have a direct sum @;:1 C(; in CG and it is enough to prove that this
direct sum is equal to Z(CG).

D V1<j<randV ge G, we have

9-CG=q(g7'Gg)=C-g

and extending by C-linearity, we get a - (; = 6, -a V1 <j<randV ae CG, proving that
@1;1 C( < Z(CG).

. Let a € Z(CG) and write a = Y,
have

N

g9eG Agg With {Ag}geq = C. Since a is central, for every h € G, we

YiAgg=a=hah™" =) Ag(hgh™").
gel gelG

Comparing coefficients yield Ay = Apgp—1 V g, h € G. Namely, the coefficients A, are constant on
the conjugacy classes of G, and hence

=1 j=1 |

Now, notice that by definition the class sums @ (1 < j < r) are elements of the subring ZG of CG,
hence of the centre of ZG.

Corollary 16.3

(@) The centre Z(ZG) of the group ring ZG is finitely generated as a Z-module.

(b) The centre Z(ZG) of the group ring ZG is integral over Z; in particular the class sums 6}
(1 < j < r) are integral over Z.
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Proof:

(a) It follows directly from the second part of the proof of Lemma 16.2 that the class sums 6, 1<j<r)
span Z(ZG) as a Z-module.

(b) The centre Z(ZG) is integral over Z by Theorem D.2 because it is finitely generated as a Z-module
by (a). m

Notation 16.4 (Central characters)

Re

Th

If ¥ € Irr(G), then we may consider a C-representation affording x, say pX : G — GL(C"X)) =
Autc(C"X)) with n(x) := x(1). This group homomorphism extends by C-linearity to a C-algebra
homomorphism

X CG —  Endc(C"0)
a=>4cA9 — Pa)=2,ecrP(9).

Now, if ze Z(CG), then for each g € G, we have
P (2)p*(g) = pX(z9) = p*(g2) = p*(9)p*(2).

As we have already seen in Chapter 2 on Schur’s Lemma this means that pX(z) is CG-linear. This
holds in particular if z is a class sum. Therefore, by Schur’s Lemma, for each 1 < j < r there exists
a scalar w, (C;) € C such that

PG = w, (G) - dgao -
The functions defined by

&G o w

(where x runs through Irr(G)) and extended by C-linearity to the whole of Z(CG) are homomor-
phisms of C-algebras; they are called the central characters of CG (or simply of G).

mark 16.5

If ze Z(G), then [z] = {z} and therefore the corresponding class sum is z itself. Therefore, we may
see the functions wy|7(g) : Z(G) — C as C-representations of Z(G) of degree 1, or equivalently
as linear characters of Z(G).

eorem 16.6 (Integrality Theorem)

The values wx(éj) (x € Irr(G), 1 < j < r) of the central characters of G are algebraic integers.
Moreover,

“’X(&j) = —=x(g)) Vxelr(G),V1<j<r.

Proof: Let x € Irr(G) and 1 < j < r. By Corollary 16.3 the class sum 6, is integral over Z. Thus there exist

integers n € Z-p and ao, ..., a,—1 € Z such that E\j” + 17,,,1(?/”_1 + ...+ ao = 0. Applying W, yields
w, (G)" + ap1w,(C)" " + ... + a0 = w,(0) = 0, so that w, () is an algebraic integer.
Now, according to Notation 16.4 we have

x(Mw, (G) =Tr (P(C)) =Tr (. pX(g9)) = X Tr (p(9)) = D x(9) = IGlx(g)).
geC; geG; geC;
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where the last equality holds because characters are class functions. The claim follows. ]

Corollary 16.7
If x € lrr(G), then x (1) divides |G|.

Proof: By the 1st Orthogonality Relations we have

G G 4
x(1|) (')< s D (o §|C|xg,

geG

- |Gl -
=] ﬁx(gf)x g7 ).
j=1 N —

wx(ﬁf)

Now, for each 1 < j < r, w,(g;) is an algebraic integer by the Integrality Theorem and X(gﬂ) is an
algebraic integer by Corollary 15.1. Hence |G|/x(1) is an algebraic integer because these form a subring
of C. Moroever, clearly |G|/x(1) € Q. As the algebraic integers in Q are just the elements of Z, we
obtain that |G|/x(1) € Z, as claimed. |

Example 8 (The degrees of the irreducible characters of GL3(F,))

The group G := GL3(F;) is a simple group of order
|G| = #Fy-bases of F3 = (2> —1)(2> —=2)(2 —=2?) =168 =23.3.7.

For the purpose of this example we accept without proof that G is simple and that it has 6 conjugacy
classes.

Question: can we compute the degrees of the irreducible characters of GL3(F;)?

(1) By the above |Irr(G)| = |C(G)| = 6 and the degree formula yields:
6
1+ > x(1)? = |G| = 168.

(2) Next, as G is simple non-abelian, G = G’ and therfeore G has |G : G’| = 1 linear characters
by Corollary 14.8, namely
xi(1) =2 foreach2 <i<6.

Thus, at this stage, we would have the following possibilities for the degrees of the 6 irre-
ducible characters of G:

W NDNDNDN
NN N oo O

(3) By Corollary 16.7 we now know that x;(1) | |G| for each 2 < i < 6. Therefore, as 51 |G| and
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0 N 0 & &~

(4) In order to eliminate the last-but-one possibility, we use Exercise 14.14 telling us that a
simple group cannot have an irreducible character of degree 2. Hence

i) =1, (1) =3, x3(1) =3, x4(1) =6, x5s(1) =7, x6(1) =8.

Exercise 16.8

Let G be a finite group of odd order and, as usual, let r denote the number of conjugacy classes
of G. Use character theory to prove that

r=|G| (mod 16).

[Hint: Label the set Irr(G) of irreducible characters taking dual characters into account. Use the divisibility property of
Corollary 16.7]

17 The Centre of a Character

Definition 17.1 (Centre of a character)

The centre of a character x of G is Z(x) :={ge G | |x(g)| = x(1)}.

Note: Recall that in contrast, x(g) = x(1) < g € ker(x).

Example 9

Recall from Example 5 that the character table of G = S3 is

[1d (12) (123)

x| 1 1 1
x| 1 - 1
X3 | 2 -1

Hence Z(x,) = Z(x,) = G and Z(x3) = {Id}.

mma 17.2
If p: G —> GL(V) is a C-representation affording the character y and g € G, then:

Ix(g@)l=x(1) <= p(g)eC idy .
In other words Z(x) = p~'(C* Idy ).
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Proof: Let n := x(1). Recall that we can find a C-basis B of V such that (p(g))g is a diagonal matrix
with diagonal entries €1, ..., €, which are o(g)-th roots of unity. Hence €1, ..., g, are the eigenvalues
of p(g). Applying the Cauchy-Schwarz inequality to the vectors v := (g1,...,&,) and w:= (1,...,1) in
C" yields

()l = ler + ... + &l = Kv. Wyl < [[VI[ - [Iwl| = V/n/n = n = x(1)

and equality implies that v and w are C-linearly dependent so that &1 = ... = ¢, =: €. Therefore
p(g) € C*Idy. Conversely, if p(g) € C* Idy, then there exists A € C* such that p(g) = Aldy. Therefore
the eigenvalues of p(g) are all equal to A, i.e. A =& = ... = g, and therefore

Ix(g)|=|nAl=n[Al=n-1=n.

Proposition 17.3

Let ¥ be a character of G. Then:
(a) Z(x) 2 G

(b) ker(x) <Z(x) and Z(x)/ker(x) is a cyclic group;
(c) if x is irreducible, then Z(x)/ker(x) = Z(G/ker(x)).

Proof: Let p: G — GL(V) be a C-representation affording x and set n := x(1).
(a) Clearly C*Idy < Z(GL(V)) and hence C* Idy <GL(V). Therefore, by Lemma 17.2,

Z(x)=p '(C*ldv) <G

as the pre-image under a group homomorphism of a normal subgroup.

(b) By the definitions of the kernel and of the centre of a character, we have ker(x) < Z(x). Therefore
ker(x) < Z(x) by (a). By Lemma 17.2 restriction to Z(x) yields a group homomorphism

p|Z(X) : Z(x) —— C*ldy

with kernel ker(x). Therefore, by the 1st ismomorphism theorem, Z(x)/ker(x) is isomorphic to a
finite subgroup of C* Idy = C*, hence is cyclic.

(c) By the arguments of (a) and (b) we have
Z(x)/ker(x) = p(Z(x)) < Z(p(G)).-
Applying again the first isomorphism theorem we have p(G) = G/ ker(p), hence
Z(p(G)) = Z(G/ker(p)) = Z(G/ker(x)) -

Now let g ker(x) € Z(G/ker(x)), where g € G. As x is irreducible, by Schur’s Lemma, there exists
A e C* such that p(g) = Aldy. Thus g € Z(x) and it follows that

Z(G/ker(x)) < Z(x)/ker(x).

Exercise 17.4

Prove that if x € Irr(G), then Z(G) < Z(x). Deduce that (),¢\.q) Z(x) = Z(G).

xelrr
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Exercise 17.5
Prove that, if x € Irr(G), then x(1) | |G : Z(x)|- Deduce that x(1) | |G : Z(G)].

This allows us to prove an important criterion, due to Burnside, for character values to be zero.

Theorem 17.6 (Burnside)

Let x € Irr(G) and let C = [g] be a conjugacy class of G such that ged(x (1),
x(g) =0orgeZ(x)

Proof: As gcd(x(1),

C|) = 1. Then

C|) =1, there exist u, v € Z such that ux(1) + v|C| =1 Set a := %. Then

IClx(g)
x(1)

(ux(1) +v[C]) = ux(g) +v = ux(g) + vw,(C)

is an algebraic integer because both x(g) and w, (C) are. Now, set m := [(g)| and let , := e, As
x(g) is a sum of m-th roots of unity, certainly x(g) € Q({,). Let G be the Galois group of the Galois
extension Q € Q({,). Then for each field automorphism o € G, o(a) is also an algebraic integer because
a and o(a) are roots of the same monic integral polynomial. Hence B :=[],.; 0(a) is also an algebaric
integer and because g(B) = B for every g € G, B is an element of the fixed field of G, namely B € Q
(Galois theory). Therefore B e Z.

If g € Z(x). then there is nothing to do. Thus we may assume that g ¢ Z(x). Then |x(g)| # x(1), so
that by Property 7.5(c) we must have |x(g)| < x(1) and hence |a| < 1. Now, again by Property 7.5(b),
x(g) =& +...+ &, withn=x(1) and &1, ..., g, m-th roots of unity. Therefore, for each o € G\{ld},
we have o(x(g)) = o(e1) + ... + o(e,) with o(e1),..., 0(e,) m-th roots of unity, because €1, ..., &,
are. It follows that

lo(x(g)] = lo(er) + ... + alen)| < lo(en)[ + ... + [a(en)| = n = x(1)

and hence 1
lo(a)] = WW(X(Q)N <

~

(M)
T

>

Thus
Bl=I]To@l=_lal - [] Jote)]<1.

oeg P oeG\{Id} <1

The only way an integer satisfies this inequality is 8 = 0. Thus a = 0 as well, which implies that
x(g) =0. =

Corollary 17.7

Assume now that G is a non-abelian simple group. In the situation of Theorem 17.6 if we assume
moreover that (1) > 1 and C # {1}, then it is always the case that y(g) = 0.

Proof: Assume x(g) # 0, then Theorem 17.6 implies that g € Z(x), so Z(x) # 1. As G is simple and
Z(x) < G by Proposition 17.3(a), we have Z(x) = G. Moreover, the fact that G is simple also implies
that ker(x) = 1, as if it were G, then x would be reducible. Thus, it follows from Proposition 17.3 that

G =Z(x)/ker(x) = Z(G/ker(x)) = Z(G) =1,

where the last equality holds because G is simple non-abelian. This is contradiction. ]
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18 Burnside’s p?q’-Theorem

Character theory has many possible applications to the structure of finite groups. We consider in this
section on of the most famous of these: the proof of Burnside's p?q”-theorem.

Example 10
To begin with we consider two possible minor applications of character theory to finite groups. Both
are results of the Einfiirung in die Algebra, for which you have already seen purely group-theoretic
proofs.

(a) G finite group such that |G| = p? for some prime number p = G is abelian.

- Proof using character theory. By Corollary 16.7 we have x (1) | |G| for each x € Irr(G).
Thus

x(1) e{l,p,p’}.

Therefore the degree formula reads

2 2 2 2
pP=1Gl= > x(1)=1c(1)’+ >, x(1)?,
Xx€Elrr(G) X€Elrr(G)

=1 x#1¢

which implies that it is not possible that the degree of an irreducible character of G is
p or pz. In other words, all the irreducible characters of G are linear, and thus G is
abelian by Corollary 14.8.

(b) G is a non-trivial p-group = G is soluble.

[Recall from the Einfiirung in die Algebra that a finite group G is soluble if it admits a chain

of subgroups
1T=Gi<lGi<...<Gs=0G

such that for 1 < i <'s, G;—1 < G; and G;/G;_1 is cyclic of prime order. Moreover, we have the
following very useful solubility criterion, sometimes coined "the sandwich principle": if H <G
is a normal subgroup, then the group G is soluble if and only if both G and G/H are soluble.]

- Proof using character theory. By induction on |G| =: p? (a € Z~p). If |G| = p or
|G| = p?, then G is abelian (cyclic in the former case). Finite abelian groups are clearly
soluble because they are products of cyclic groups of prime power order.

Therefore, we may assume that |G| = p3. As in (a) Corollary 16.7 implies that

x(1) e {1,p,p? ...,p% for each x € Irr(G).

Now, again the degree formula yields

pl=1Gl =1+ > x(1)?.
x€elrr(G)
x#1c
and for this equality to hold, there must be at least p linear characters of G (including
the trivial character). Thus it follows from Corollary 14.8 that G’ < G. Hence both
G’ and G/G’ are soluble by the induction hypothesis = G is soluble by the sandwich
principle.
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Theorem 18.1 (Burnside)

Let G be a finite non-abelian simple group. If C is a conjugacy class of G such that |C| = p? with
p prime and a € Z>¢, then C = {1}.

Proof: Assume ab absurdo that C # {1} and choose g € C. In particular g # 1. Since G is non-abelian
simple G = G’ and it follows from Corollary 14.8 that the unique linear character of G is the trivial
character. Hence, for each x € Irr(G)\{1¢}, either p | x(1) or 1 = ged(x (1), p) = ged(x(1),|C|), and
in the case in which p 1 x(1), then x(g) = 0 by Corollary 17.7. Therefore, the Second Orthogonality

Relations read
0=1+ =1+ 1
> Xl9), x( > x(g)x(1)

XxE€Elrr( G) _ X€Elrr(G)
x#16 p%?(%f) =x() plx(1)

and dividing by p yields
3 x(1) ooz
W—/ P

xelrr(G) ~——algebraic
Pix(M) ez integer

algebraic integer

This contradicts the fact that rational numbers which are algebraic integers are integers. It follows that
g =1 is the only possibility and hence C = {1}. |

As a consequence, we obtain Burnside’s p?g” theorem, which can be found in the literature under two
different forms. The first version provides us with a "non-simplicity" criterion and the second version
with a solubility criterion, which is extremely hard to prove by purely group theoretic methods.

Theorem 18.2 (Burnside’s p®q® Theorem, "simple" version)

Let p, g be prime numbers and let a, b € Z>¢ be integers such that a +b > 2. If G is a finite group
of order p?q®, then G is not simple.

Proof: First assume that @ =0 or b = 0. Then G is a g-group with g
Therefore the centre of G is non-trivial (Algebra I), thus of non-trivial prime power order. Therefore,
there exists an element g € Z(G) of order g (resp. p) and 1 # {g) < G is a proper non-trivial normal
subgroup. Hence G is not simple.

We may now assume that a # 0 # b. Let Q € Syl (G) be a Sylow g-subgroup of G (ie. [Q = q")
Again, as Q is a g-group, we have Z(Q) # {1} and we can choose g € Z(Q)\{1}. Then

0 < Calg)
and therefore the Orbit-Stabiliser Theorem yields
lg]l = 1G : Calg)l = p

for some non-negative integer r < a. If r = 0, then p” =1 and G = Cg(g), so that g € Z(G). Hence
Z(G) # {1} and G is not simple by the same argument as above. If p” > 1, then G cannot be simple by
Theorem 18.1. |

Theorem 18.3 (Burnside’s p®q® Theorem, "soluble" version)

Let p, g be prime numbers and a, b € Z~o. Then any finite group of order p?g? is soluble.

Proof: Let G be a finite group of order p®q®. We proceed by induction on a + b.

- a+be{0,1} = G is either trivial or cyclic of prime order, hence clearly soluble.
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- a+b>=2 = G is not simple by the "simple" version of Burnside's p?q” theorem. Hence there
exists a proper non-trivial normal subgroup H in G and both |H|, |G/H| < p°q®. Therefore both H
and G/H are soluble by the induction hypothesis. Thus G is soluble by the sandwich principle.
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Chapter 6. Induction and Restriction of Characters

In this chapter we present important methods to construct / relate characters of a group, given charac-
ters of subgroups or overgroups. The main idea is that we would like to be able to use the character
tables of groups we know already in order to compute the character tables of subgroups or overgroups
of these groups.

Notation: throughout this chapter, unless otherwise specified, we let:

- G denote a finite group, H < G and NG, iy : H— G, h — h is the canonical inclusion of H
in G and niny : G — G/N, g — gN is the quotient morphism;

- K := C be the field of complex numbers;
- 1rr(G) == {xy, ..., x,} denote the set of pairwise distinct irreducible characters of G;

- G =[g1],..., G = |g,] denote the conjugacy classes of G, where g1,...,g, is a fixed set of
representatives; and
- we use the convention that x; = 1 and g1 = 1€ G.

In general, unless otherwise stated, all groups considered are assumed to be finite and all C-vector
spaces [/ modules over the group algebra considered are assumed to be finite-dimensional.

19 Induction and Restriction

We aim at inducing and restricting characters from subgroups, resp. overgroups. We start with the
operation of induction, which is a subtle operation to construct a class function on G from a given class
function on a subgroup H < G. We will focus on characters in a second step.

Definition 19.1 (Induced class function)
Let H < G and ¢ € Cl(H) be a class function on H. Then the induction of ¢ from H to G is

Ind$(¢) =pt4: G — C
g = @1(9) = i Diec ¢ (xgx7 "),

oy) HyeH,
0 ifyé¢H.

where for y € G, ¢°(y) := {
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Remark 19.2
With the notation of Definition 19.1 the following holds:
(a)
—1
(9) ¢ (xgx™") = o Plxgx—);
IHI 2, IHI

xeG xeG
xgx~'eH

(b) the function <pT,§ is a class function on G, because for every g,y € G,

@1 (ygy™') = |H|§g¢ xygy 'xh T ,H‘zgqo sgs™') = @15 (g).
XE se

In contrast, the operation of restriction is based on the more elementary idea that any map can be re-
stricted to a subset of its domain. For class functions / representations / characters we are essentially
interested in restricting these (seen as maps) to subgroups.

Definition 19.3 (Restricted class function)
Let H < G and ¢ € Cl(G) be a class function on G. Then the restriction of ¢ from G to H is

Resfi() == ¢ lfj= |y = Yoiy.

This is obviously again a class function on H.

Remark 19.4

If  is a character of G afforded by the C-representation p : G —> GL(V/), then clearly /| is the
character afforded by the C-representation Resfi(p) := p|5:= p|, = poiy: H —> GL(V). See
Exercise 9.10(i).

Exercise 19.5
Let H </ < G and let g € G. Prove the following assertions:

(@) peCl(H) = @1 (g)= X olxgx);
HxeH\G
Hx=Hxg

(b) peCl(H) = (@T{#)TJG: ®1% (transitivity of induction);
(c) geCl(G) = (Yl&)l,=ylf (transitivity of restriction);
(d) the maps
Indf : Cl(H) — CI(G), ¢ — @15 and  ResS :CI(G) — CI(H), ¢ — ¢
are C-linear;

(e) ¢ eCl(H) and Y eCLU(G) = Y- o1E= (Y15 )15 (Frobenius formula).
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Theorem 19.6 (Frobenius reciprocity)

Let H < G, let ¢ € CI(H) be a class function on H, and let ¢y € Cl(G) be a class function on G.
Then,

P15, We =< ¥lipy  and et =Wl ey

Note: If ¢ and (s are characters, then clearly all four numbers are equal.

Proof: Since (—, —) and (—, —),, are hermitian forms, the 1st equality holds if and only if the 2nd equality
holds. Hence, it suffices to prove the second one. By the definitions of the scalar products and of the
induction, a direct computation yields:

.
Wt = 15 2, (991 (9) G Zw H Zqo xgx~
Gl & 16 29T -
Yot
|H|Z Z Y(xgx™)e(xgx1)
geG xeCG
xgx~'eH
2wl (s
|H| seH
=Yl o,
where the third equality comes from the fact that ¢ is a class function on G, and for the fourth equality
we set s 1= xgx . [ ]

Corollary 19.7

Let H < G and let x be a character of H of degree n. Then the induced class function XTE/ is a
character of G of degree n- |G : H|.

Proof: Given ¢ € Irr(G) by Frobenius reciprocity we can set

my = 5 Y6 = O Y LEH € Zso,

which is an integer because both y and (/| are characters of H. Therefore,

xta= > myy
el (G)
is a non-negative integral linear combination of irreducible characters of G, hence a character of G.
Moreover,
G |G : H|.
X;x ‘H|\ x(1) = x(1)|G: H| =
Remark 19.8

We conclude from Exercise 19.5(d) and Corollary 9.8, that the induction and the restriction of a
virtual character is again a virtual character. In other words, if H < G, then:

(@) peZlr(H) = ¢15%€eZIrr(G); and
(b) g eZlrr(G) = Y l&e ZIrm(H).
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Example 11

(@) The restriction of the trivial character of G from G to H is obviously the trivial character of H.

(b) If H = {1}, then 14y, T{G1}= Xreq - Indeed, if g € G then, it follows from Corollary 10.2 that

1{1}T{1} { Z gX = 61g|G| Xreg(g)'
xeG —f—
=0 unless g=1

(c) Let G = S35, H={(12)), and let ¢ : H — C with ¢(Id) =1, ¢((1 2)) = —1 be the sign
homomorphism on H. By the remark, it is enough to compute <pr, on representatives of the
conjugacy classes of S3, e.g. Id, (1 2) and (12 3):

1604 =2 3 ¢°(id) = |53/ 1 =3,
X653
1
7‘] _
015 ((123)) Z(p (123)x) = 220_,
X653 XES3

(as the conjugacy class of a 3-cycle contains only 3-cycles and ¢(3-cycle) = 0)

o1h =5 Z ¢’ (x'(12)x) = (2<Po((1 2)) +2¢°((1 3)) + 2¢°((23))) = —

X€S3

Moreover we see from the character table of S3 (Example 5) that <pTE,: X, + x3. But we can
also compute with Frobenius reciprocity, that

0 =@, x1lin = (Pt x1)6

and similarly

T={o o lion=<{p1x0c and 1={p,x3lipn =<1 x3)6-

Example 12 (The character table of the alternating group As)

The conjugacy classes of G = As are
G={ld,G=[12)34)],G=[(123)], C4u G = {5-cycles},

ie. g1 =1d,g2=(12)(34),93=(123)and ge C; = o(g) =5and g~' € C4 but g%, g> € G5 s0
that we can choose g4 := (123 45) and g5 := (1352 4). This yields:

||I’I’(A5)| =5 and |C1| = 1, |C2| = 15, |C3| = 20, |C4| = |C5| =12.
We obtain the character table of As as follows:

- We know that the trivial character 15 = y; is one of the irreducible characters, hence we
need to determine Irr(As)\{1c} = {Xo. X3 X4 X5}

- Now, H := A4 < As and we have already computed the character table of A3 in Exercise
Sheet 5. Therefore, inducing the trivial character of A4 from A4 to As we obtain that
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1416 (Id)=1-]G: H| =5 (see Cor. 19.7)
1116 ((12)(34) =512 =1

1118 ((123) =5-24=2

1HTE, (5-cycle) = 11—2-0:0

Now, by Frobenius reciprocity

Atfoxave = xalion=1.
—

=1y

It follows (check it) that (141% —x1, 141G —x1)c = 1,50 141E —x1 is an irreducible charac-
ter, say x4 := 1HTg —x1. The values of x4 are given by (4,0,1,—1,—1) on G, 3, G3, G4, G5
respectively.

- Next, as As is a non-abelian simple group, we have As/[As, As| = 1, and hence the trivial
character is the unique linear character of As and x,(1), x5(1), x5(1) = 3. (You have also
proved in Exercise 19, Sheet 6 that simple groups do not have irreducible characters of
degree 2.) Then the degree formula yields

X217+ x3(1)7 + x5(1)? = [As| = x1(1)* = x4(1)? = 60 — 1 — 16 = 43.

As degrees of characters must divide the group order, it follows from this formula that
X>(1),x3(1), x5(1) € {3,4,5,6}, but then also that it is not possible to have an irreducible
character of degree 6. From this we easily see that only possibility, up to relabelling, is
X>(1) = x5(1) = 3 and x5(1) = 5. Hence at this stage, we already have the following part of
the character table:
G G G G G

| Ck| 1 15 20 12 12
[Ca(gi)| |60 4 3 5 5

X T 1 1 1 1
X2 3

X3 3 :

i |4 0 1 -1
X5 5

- Next, we have that

ged(x2(1),

G]) = ged(x3(1), [G5]) = ged(x5(1), |Cal) = ged(x5(1),

so that the corresponding character values must all be zero by Corollary 17.7 and we get:

Gl)=1,

G G G G G

| Ci| 1 15 20 12 12

Colge)| |60 4 3 5 5

X1 T 1 1 1 1
X2 3 0
X3 3 . 0

X4 4 0 1 -1 -1

X5 5 0 0
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- Applying the Orthogonality Relations yields:
1st, 3rd column = x:s(g3) = —1 and the scalar product (x;, x5)c = 0 = x5(g2) = 1.

- Finally, to fill out the remaining gaps, we can induce from the cyclic subgroup Z5 :=
{(12345)) < As. Indeed, choosing the non-trivial irreducible character ¢y of Z5 which
was denoted "x3" in Example 4 gives

Y1%=1(12,0,0, + 3, ¢+ ¢Y)
where { = exp(27i/5) is a primitive 5-th root of unity. Then we compute that
<L/’Tg5rX4>c =1= <¢’Tg5rX5>c g L/’T% ~Xs—X5=(3,-1,0,-C~— ¢ - - 53)

and this character must be irreducible, because it is not the sum of 3 copies of the trivial
character. Hence we set y, := l,[ngs —X4 — X5 and the values of x5 then easily follow from
the 2nd Othogonality Relations:

G G G Cy G

G| 1 15 20 12 ¥

|Calgr)] |60 4 3 5 5

x| 1 1 1 1 1
N |3 10 - @
“ |3 10 2-p -

. |4 0 1 1

X |5 1 -1 0 0

Remark 19.9 (Induction of CH-modules)

At the level of CG-modules induction is just a praticular case of a so-called extension of scalars
from CH to CG. More precisely, if M is a CH-module, then the induction of M from H to G is
defined to be CG ®cy M. Moreover, if M affords the character x, then CG ®cy M affords the
character XTE,.

20 Clifford Theory

Clifford theory is a generic term for a series of results relating the representation / character theory of
a given group G to that of a normal subgroup N < G through induction and restriction.

Notation 20.1
Let H< G and let x € G.

(1) We let

H — xHx!
h —  xhx

denote the conjugation homomorphism by x.
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(2) We write x € [G/H] to mean that x € G is a representative of the element xH in G/H. In a
sum, writing >, .1/ Means that the sum runs over a full set of representatives for the left
cosets in G/H. This is the same as writing >, e /1) -

Definition 20.2 (Conjugate class function [ inertia group)

Let H < G, let ¢ € Cl(H), let g € G and let Comr gHg™'" — H denote the conjugation
homomorphism by g~'. We define:

(a) the conjugate class function to ¢ by g to be 9% = ¢ o g1 € Cl(gHg™"), ie. the class
function on gHg~" given by

1 1

— C,x— @(g” 'xg);

Y :gHg™
and

(b) the inertia group of ¢ in G to be Z¢(¢) := {ge G| % = ¢}.
Exercise 20.3
Let g, h € G. With the notation of Definition 20.2, prove that:

(a) Y% is indeed a class function on gHg™";

(b) Zg(¢) < G and H < Zg(¢9) < Ng(H);

() % =" = h~'geTs(p) = glc(e)=hIc(e);
(d) if p: H— GL(V) is a C-representation of H with character x, then

Jpi=pocy1:gHg ' — GL(V),x = p(g~"xg)

1

is C-representation of gHg ™" with character 9% = x o €y and 9 (1) = x(1);

(e) if J < H then Y lf) = (%) 127

Exercise 20.4 (Mackey Formula)
Let H,L < G and let ¢ € CI(H). Prove that

—1
AR D SR €O LR
LgHe I\G/H

Exercise 20.5
Deduce from the Mackey formula that if N < G, and ¢ € Irr(N), then

WPt e = D) W Wy

xNeG/N
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Lemma 20.6

(@) f H< G, ¢,y eCl(H) and g € G, then (9, 9¢1>9ng = (@, YOu.

(b) f NG and g € G, then we have ¢ € Irr(N) < 9 € Irr(N).

(c) If N< G and ¢ is a character of N, then (¢1%) |$= |Tc(y) : NI 2 gerc/zewy ¥

Proof: (a) Clearly

1 -
o, W)gpg— = m Z 9p(x) 9 (x)
grig xegHg—1
= Z 9(g7"'x9)P(g "xg)
xegHg*1
= 1)(
gEH

(b) As NG, gNg=' = N. Thus, if ¢ € Irr(N), then on the one hand %) is also a character of
N by Exercise 20.3(d), and on the other hand it follows from (a) that {9, ) = (Y, Yy = 1.

Hence 9 is an irreducible character of N. Therefore, if %y € Irr(N), then ¢ = 97 '(9) € Irr(N)
as required.

c) If n.e N then so does g~ 'n € G, hence
If ne N th d g1ng G, h

YRR (n) = w15 (n) |N| PIRAC

P IRICRE i L)

gelG geCG

Notation 20.7
Given N < G and ¢ € Irr(N), we set Irr(G | ¢) =

{x €lrr(G) [ O lR on # O}

Theorem 20.8 (CLIFFORD THEORY)

Let N G. Let x € lrr(G), ¢ € Irr(N) and set Z := Z¢ (). Then the following assertions hold.
(@) If ¢ is a constituent ofxlﬁ, then

xlN=e > 9y,

9Zc()eC/Ia(yY)

where e = (¢ 1S Won = G YT 6 € Zo is called the ramification index of x in N (or of
¢ in G). In particular, all the constituents of)(l,% have the same degree.

(b) Induction from Z = Z(¢) to G induces a bijection
Ind$: (T |y¢) — (G| )
n - g

preserving ramification indices, i.e. (nl%, Yo = (N18%, )y = e.
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Proof:

(a) By Frobenius reciprocity, (x, Y 1$>c = (¢ 1S, @)y # 0. Thus x is a constituent of 1§ and
therefore Xlg is a constituent of g[/T,%lg.

Now, if n € Irr(N) is an arbitrary constituent of x | (i.e. (x5, n)n # 0) then by the above, we
have

WIRAR N = OelRmn > 0.

Moroever, by Lemma 20.6(c) the constituents of (1% are preciely {% | g € [G/Zc(y)]}. Hence
n is G-conjugate to L[I. Furthermore, for every g € G we have

Ol TN = /\/ > x(h) = /\/ Y x(hg(g~"h g)
‘ | heN | | heN
Cl(G) _
| ‘heN
s:=g 'hgeN
| |SEN

Therefore, every G-conjugate 94 (g € [G/Zc()]) of  occurs as a constituent of x |§ with the
same multiplicity e. The claim about the degrees is then clear as 9¢i(1) = (1) Vg € G.
Claim 1: nelrr(Z | ) = ntcelrr(Gly).

Since T = I7(¢), (a) implies that n %= e’y with ¢’ = |k, YN = "(1)) > 0. Now, let y € Irr(G)

be a constituent of n1%. By Frobenius Reciprocity we have

0+ O nfre = XAE mr-
It follows that n|%, is a constituent of x |$|%, and

e =R n = OERn Won = (R don = € > 0,
hence x € Irr(G|y). Moreover, by (a) we have e = (x |§,9¢y/)n > €’ for each g € G. Therefore,

x(=e S 99 L elG:TIY(1) = &|G: TIY(1) = |G : Tn(1) = n1¢ (1) > x(1).

9€[G/1]
Thus e = e/, n1%= x € Irr(G), and therefore n1%e Irr(G|¢).
Claim 2: x e Irr(G | ) = I nelr(T | ) such that (x |&,n); # 0.
Again by (a), as x € Irr(G | ¢), we have x |G= e cq/m I where e = {x |5, ¢ € Z=o.

Therefore, there exists n € Irr(Z) such that

LS mr # 0 # (g, Yo

because Xl/\/ Xlz , so in particular n € Irr(Z | ¢). Hence existence holds and it remains to see
that untqueness holds Agam by Frobenius reciprocity we have 0 # (x,n1%).. By Claim 1 this
forces x = n1% and nl= ey, so e is also the ramification index of ¢ in Z.

Now, write x |§= Y1 (r) @1 A = 2., Aad + ayn with a; > 0 for each A€ Irr(Z) and @, > 0. It
follows that

(@, =ik + D wrlk= xIk - nlk =e D> 4
A#n v . ge[G/TI\[1]
=egerc/r] W =ey

Since ¢ does not occur in this sum, but occurs in %, the only possibility is a, = 1 and A ¢ Irr(Z|¢)
for A # n. Thus n is uniquely determined as the only constituent of y | in Irr(Z | ¢).

Finally, Claims 1 and 2 prove that Ind¥ : Irr(Z | o) — Ire(G | ¢), n — n1¢ is well-defined and
bijective, and the proof of Claim 2 shows that the ramification indices are preserved. ]
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Example 13 (Normal subgroups of index 2)
Let N < G be a subgroup of index |G : N| =2 (= N < G) and let x € Irr(G), then either

(1) Xlﬁe Irr(N), or
2) x14=w+9¢fora gelr(N) and a ge G\N.

Indeed, let s € Irr(N) be a constituent of x |§. Since |G : N| = 2, we have Zg(¢) € {N, G}.
Theorem 20.8 yields the following:

- HZg(y) = Nthenlrr(Zg(y) | @) = {¢} and l,[IT/%: X, so that e = 1 and we getxlgz Y49y
for any g € G\N.

- fZg(y) = G then G/Zg(¢) = {1}, so that
XIn=ep  with e = OlR, oy = O YR
Moroever, by Lemma 20.6(c),

YIRL=1Za() N > 9 =2y
ge[G/Za ()]

Hence
20(1) =N M = xI8 (1) =x(1) =ep(1) = e<2.

Were e = 2 then we would have 2¢/(1) = 1§ (1), hence x = 1§ and thus
1= = Ol Pon =e =2

a contradiction. Whence e = 1, which implies that x | § € Irr(N). Moreover, 1$= x + x' for
some x’ € Irr(G) such that x' # x.

Remember that we have proved that the degree of an irreducible character of a finite group G divides
the index of the centre |G : Z(G)|. The following consequence of Clifford’s theorem due to N. It6
provides us with yet a stronger divisibility criterion.

Theorem 20.9 (IT6)
Let A < G be an abelian subgroup of G and let x € Irr(G). Then the following assertions hold:

(@) x(1) < |G :A|; and

(b) if A G, then x(1)]|G : Al

Proof: (a) Exercise!
(b) Let ¢ € Irr(A) be a constituent of x |§, so that in other words x € Irr(G | ). By Theorem 20.8(b)
there exists n € |I‘I‘(Ic((/l) | Lp) such that y = nTIG(;(w) and nlIAC(‘/—’): 8(/J (proof of Claim 2) Now,

as A is abelian, all the irreducible characters of A have degree 1 and for each x € A, (x) is an
o(x)-th root of unity. Hence V x € A we have

()| = LY ()] = lep(x)| = elg(x)| =e-1=e=n(1) = AcZ(@).
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Therefore, by Remark 17.5, we have

10| [Zaw) : Z)l| Te(y) : A

and since y = nTIGG(w) it follows that

x(1) =G :Za(¢)[n(1) ‘ G Ta(P)] - |Za(P) Al = |G Al

21 The Theorem of Gallagher

In the context of Clifford theory (Theorem 20.8) we understand that irreducibility of characters is pre-
served by induction from Zs(¢) to G. Thus we need to understand induction of characters from N to
Zc(y), in particular what if G = Zg(¢). What can be said about Irr(G | ¢)?

Lemma 21.1
Let N < G and let ¢ € Irr(N) such that Z¢(¢) = G. Then
(L’T/?/: Z ex X
x€lrr(G)

where e, 1= (x 19, YOn = % is the ramification index of y in N; in particular

> e =1G:NJ.
x€Elrr(G)

Proof: Write /15= Y} () dx x With suitable a, = (x, ¢1§)s. By Frobenius reciprocity, a, # 0 if and
only if € Irr(G | ). But by Theorem 20.8: if x € Irr(G|y), then x |$= e, i, so

ey = Gt = 016 = 0, and atso e, = X113
Therefore,
GEN[G() = g1 ()= D) ayx(M= D exx(= > epd()=u(1) > e
Xel(G) Xe(G) Xel(G) Xel(G)
and it follows that |G : N| =3 1. (c) €} [ ]

Therefore the multiplicities {e, },eir(G) behave like the irreducible character degrees of the factor group
G/N. This is not a coincidence in many cases.

Definition 21.2 (Extension of a character)

Let N < G and yx € Irr(G) such that ¢ := Xl/(\;/ is irreducible. Then we say that  extends to G,
and x is an extension of (.
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Exercise 21.3

Let N < G and x € Irr(G). Prove that

X IRTR= IfE 8 (freg) - X

where .., is the regular character of G/N.

Theorem 21.4 (GALLAGHER)

Let N < G and let x € Irr(G) such that ¢ := x |§ € Irr(N). Then

Y= > A1) Infg, (X)X,
Xelrr(G/N)

where the characters {Infg/N()\) -x | A€ lrr(G/N)} of G are pairwise distinct and irreducible.

Proof: By Exercise 21.3 we have ¢/1§= Infg/N(Xreg) - X, where .., denotes the regular character of G/N.
Recall that by Theorem 10.3, Xoq = 2.cirr(g/n) A(1) A, so that we have

YIRk= D, A1) InfE,(A) - x.

Xelrr(G/N)

Now, by Lemma 21.1, we have

G:Nl= > e =W e = Do AMuMAnE (A - x, InfE N (1) - X6
X€Elrr(G) Auelr(G/N)

> > A1)’ =[G:N|.
Aelrr(G/N)

Hence equality holds throughout. This proves that
(nfg i (A) - X, InfE N (1) - XD = O

By Erercise 13.4, Infg/N()\) - x are characters of G and hence the characters {Infg/,\,()t) x| Aelrr(G/N)}
are irreducible and pairwise distinct, as claimed. |

Therefore, given ¢ € Irr(N) which extends to x € Irr(G), we get Infg/N()\) - x (A€ lrr(G/N)) as further
irreducible characters.

Example 14
Let N < G with |G: N| =2 (= N<G) and let ¢ € Irr(N). We saw:
- Zg () = N then Y15e Irr(G);

- if Zg() = G then ¢ extends to some y € Irr(G) and Y@ = x + x' with x’ € Irr(G)\{x}. It
follows that x’ = x - sign, where sign is the inflation of the sign character of G/N =~ S; to G.




Chapter 7. Frobenius Groups

In this chapter we show how to understand the irreducible characters of an important class of finite
groups: the Frobenius groups. After Burnside's p?g®-Theorem this provides us with a second funda-
mental application of character theory to the structure theory of finite groups.

Notation: throughout this chapter, unless otherwise specified, we let:
- G denote a finite group in multiplicative notation with neutral element 1 :=1g;
- K := C be the field of complex numbers.

In general, unless otherwise stated, all groups considered are assumed to be finite and all C-vector
spaces [/ modules over the group algebra considered are assumed to be finite-dimensional.

22  Frobenius Group / Frobenius Complement / Frobenius Kernel

Definition 22.1 (Frobenius group | Frobenius complement)

A finite group G admitting a non-trivial proper subgroup H such that
Hn 9H = {1} Vge G\H

is called a Frobenius group with Frobenius complement H or a Frobenius group with respect
to H.

Note: The definition implies immediately that Ng(H) = H. Also, a Frobenius complement need not be
unique.

Example 15

Assume P € Syl,(G) is such that |[P| = p and Ng(P) = P < G. (In words: P is cyclic of order p
and self-normalising!) Then, clearly, P n 9P = {1} for any g € G\P = G\Ng(P), and so G is a
Frobenius group with Frobenius complement P.

This yields immediately that the following well-known groups are Frobenius groups:

68
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Th

(1) the symmetric group S3 is a Frobenius group with Frobenius complement {(1 2));

(2) the dihedral group
Doiom+1) =<a, b | a®"*! = b* = (ab)* = 1)

of order 2(2m + 1) with m € Z>4 is a Frobenius group with Frobenius complement (b);

(3) the alternating group 214 is a Frobenius group with Frobenius complement {(1 2 3));

complement given by a Sylow p-subgroup of G.

eorem 22.2 (FROBENIUS)

the Frobenius kernel.

69

(4) non-abelian groups of order p - g with 3 < p < g are Frobenius groups with Frobenius

If G is a Frobenius group with Frobenius complement H, then there exists a normal subgroup NG
such that G = HN and H n N = {1}. Moreover, such an N is uniquely determined, and it is called

We see below that the normal subgroup N is easily defined as a set and proved to be unique with the
required properties; the crux of the difficulty lies in proving that it is a subgroup of G. This requires
character theoretical arguments!

Proof: Define N := (G\U ¢ H) v {1}.

Claim 1: Ha N = {1} and |[N| = |G : H|.

Indeed, from the definition of N we have H n N = {1} and from the definition of Frobenius complement,
H = Ng(H), so there are exactly |G : Ng(H)| = |G : H| distinct conjugates 9H of H because if g, x € G
then we have:

IH="H < x'ge Ng(H)=H < gH = xH.

Moreover, these have only the identity element in common, because if g, x € G are such that IH # *H,
then x~'g ¢ Ng(H) = H, so by the definition of the Frobenius complement,

(1} = ""9HAH=""(%Hn"H),

proving that 9H n *H = {1}. It now follows that

’U9H‘:|G:H\-(|H\—1)+1:|G\—|G:H\+1.
geCG

It follows that

INI=1G1 = ||J | +1=1GI~1GI +1G  H| - 1+1=1G: H|.
geCG

Claim 2: if G contains a normal subgroup N such that NH = G and N ~ H = {15}, then N = N
(Be careful! At this stage, this does not mean that such an N exists!)

Indeed, since N n H = {15} and N < G, certainly
Nn9H=9NnIH=9NAH)=%1}={1}

for any g € G, whence Nc N by the definition of N. Moreover, the 2nd Isomorphism Theorem implies
that |[N| = |G : H| = |N|, where the 2nd equality holds by Claim 1, proving that N = N.
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Claim 3: if 0 € CI(H) is such that 8(1y) = 0, then 015 |5= 6

To begin with, the values of the two class functions 615 |5% and 6 at 1 coincide since by Corollary 19.7
we have 01414 (1) =|G: H|-6(1) = 0. Now, let h € H\{1}. Then, given x € G, 6°(xhx~") # 0 only if
*h #1 and *h e Hn *H, so x € H. Moreover, as 0 is a class function, we get

015 6°(x
A IHI ;; IHI ;
as required.

Claim 4: Indf; : {6 € CI(H) | 6(1) = 0} —> CI(G), 0 — 615 is an isometry with respect to the scalar
products {(—, —,; and {(—, —)..
Indeed, let 8, n € CI(H) be such that 8(1y) = 0 = n(1). Then Frobenius Reciprocity and Claim 3 yield

<97g: HTE/>C = <97glf/r mu =<0, My,
as desired.

Claim 5: If nelrr(H)} and 0 := n— n(1)1y, then n* :=
Clearly, 6 € Zlrr(H) < Cl(H), 6(1) =0, and n* € ZIrr(G
hand by Claim 4, we have

015 +n(1)1¢ is an irreducible character of G.
) € Cl(G) (see Remark 19.8). Now, on the one

(811, 616>¢ = (B, Oy = {n,myy + (1)

On the other hand, by Frobenius reciprocity, {615, 1¢)c = (0,14, = —n(1), hence the above together
with the fact that 61 is a virtual character (by Remark 19.8) implies that

)6 =015 +n()16, 015 +n(1)16)¢
= (011, 01fpc + 2n(1)(011, 166 + n(1)* (N6 16)e
= {0, My + n(1)*+2n(1) - (=n(1)) + n(1)?
={nmyy =1

As n* is a virtual character, it now follows that £n* € Irr(G). However,
nE(1) = 015 (1) + n(1)16(1) = 0+ n(1) -1 = n(1) > 1,
whence n* € Irr(G).

The next claim eventually proves that N is a normal subgroup of G.
Claim 6: N = (i) ker(n*).
By Claim 5,

M = ﬂ ker(n™)

nelrr(H)

defines a normal subgroup of G. First we claim that M < N. Observe that Claim 3 implies that for any
nelrr(H),

n*Li= 015G (M 1elii=0+n() 1 =n.
Thus, if h € M n H, then for all n € Irr(H), we have

It follows that n(h) = n(1) for all n € Irr(H), and so

MnaH< () ker(n

nelrr(H)
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where the last equality holds by Exercise 14.7. This proves that M~ H = {1}, whence also Mn *H = {1}
for each x € G since M < H. Therefore M < N, and it remains to prove that N < M. So, let g € N\{1}.
Then, by the definition of N, for every x € G, we have g ¢ *H. Hence, by definition of induced characters,
015 (g) = 0 for each 0 as defined in Claim 5, and so n*(g) = n*(1) for each n e Irr(H)\{14}. It follows
that g € ker(n*) for each n € Irr(H), proving that g € M. This proves Claim 6.

The statement of the theorem now follows from Claim 6, Claim 1 and Claim 2. [ |
Remark 22.3

(@) To use standard group theory terminology, the theorem says that the Frobenius kernel is a
normal complement of H in G and that G is an internal semi-direct product of N by H.

(b) There is no known proof of Frobenius’ theorem which does not make use of character theory.

(c) Thompson proved that the Frobenius kernel N of a Frobenius group is always a nilpotent
group (i.e. N is the direct product of its Sylow subgroups).

Exercise 22.4

(@) Find two non-isomorphic finite groups which are Frobenius groups and not isomorphic to any
of the Frobenius groups given in Example 15.

(b) Find two infinite families of non-abelian finite groups which are not Frobenius groups.

Justify your answers with proofs.

23 Characters of Frobenius groups

We now construct the whole character table of an arbitrary Frobenius group.

Theorem 23.1 (Brauer’s Permutation Lemma)

Let A, B be finite groups, and assume that A acts on both Irr(B) and C(B) via left actions

Ax lrr(B) — Irr(B), (a,x)+— a.x,
Ax C(B) - C(B), (a,C)~a.C,

such that (a.x)(a.c) = x(c) for each a € A, each c € C and each C € C(B). Then
| Fixin(gy(a)| = [{x € Irr(B) | a.x = x}| = [{C e C(B) | a.C = C}| = |Fixcez)(a)]

for every a € A. (In other words, the permutation representations induced by the two actions afford
the same character.) Moreover, the number of A-orbits on Irr(B) and on C(B) coincide.

Proof: Set h := |Irr(B)| = |C(B)| and write Irr(B) = {x;...., Xy} =Xy and C(B) ={G,,..., Cp} = Xo.
By Example 1(d), the A-actions on Irr(B) =: X; and C(B) =: X, define permutation representations

px, : A— GL(C") = GL4(C) and py, : A — GL(C") = GL,(C)
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respectively, which we see as matrix representations w.r.t. to the ordered C-basis (x;,...,x,) and
(G4, ..., Cp), respectively. Moreover, we denote by Xx, and Xx,» respectively, the characters afforded by
these representations. Now, by Proposition 10.1, for each a € A we have

xx(0) = [Fxx ()] and  xy,(a) = [Fixx,(a)].

Hence, in order to complete the proof of the first claim, it is enough to prove that x, = xy,. Fixa € A
and observe that the action of @ on Xy and X, permutes the rows and the columns of X(B), sending
the row indexed by x; to the row indexed by a.x;, and the column indexed by C; to the column indexed
by 0_1.Cj-. (The reason for this choice will become clear in the next lines.) Then, the permutation of
the rows is given by left multiplication with py (a), i.e. py, (a)X(B), and the permutation of the columns
is given by right multiplication with p, (a), L.e. X(B)py,(a). Moreover, the hypothesis of the theorem
implies that
(a.x)(c) = x(a".c) VaeA VceC,YVCe(C(B).

It follows that
Px, (@)X(B) = X(B)py,(a)

and hence, since X(N) is an invertible matrix, we get

px, (@) = X(N)px, () X(N) ™",

proving that py, ~ py, and the claim follows.
For the last claim, remember that the number of A-orbits on Irr(B) is given by (xy,, 14)4 and the number
of A-orbits on C(B) is given by (xy,, 14)a. Now, both numbers are equal by the first claim. |

We want to apply Brauer’s Permutation Lemma in order to obtain information on the character table of
Frobenius groups.

Remark 23.2

If N <G, then G acts by conjugation on the sets Irr(N) and C(N). In other words, there are left
G-actions
G xIrr(N) — Irr(N)
(g.x) = gx=%
and
GxC(N) — C(N)
(g, C) — ¢.C:=9C ={gcg™" | ce C}.

Moreover, it follows from the definition of a conjugate character that these actions satisfy the

condition
(g.x)(g.c)=x(c) VceCandany CeC(N).

It follows that we may apply Brauer’'s Permutation Lemma to this setting.

eorem 23.3

Let G be an arbitrary finite group. Assume that N<G and assume that C;(n) < N forall n € N\{1}.
Then, the following assertions hold:

(@) if Y e lrr(N)\{1n}, then ¢15 € Irr(G);

(b) if x € Irr(G) is such that N & ker(x), then there exists ¢ € Irr(N) such that y = /1.
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Proof:

(a) First, it follows from the Mackey formula that (¢ 15, ¥ 1R0c = DineonC W Yoy (See Exer-

cise 20.5.) Thus, to prove that z,lng is irreducible, it suffices to prove that 4 # * for each x ¢ N,
since then the latter sum is equal to 1. Now, by Brauer’s Permutation Lemma and Remark 23, it
is enough to prove that for each conjugacy class [1] # C € C(N) and each x € G that the equality
xCx~' = C implies that x € N. So, let n € C. Then, xCx~' = C implies that xnx~" = yny~" for
some y € N and hence y~'x € Cg(n) < N by the hypothesis, proving that x € N, as required.

(b) Since N < ker(x), certainly x |§ has at least one non-trivial constituent, say ¢ € Irr(N)\{1n}.
Moreover, Frobenius reciprocity yields

O Roe = AR don # 0.
Thus x is a constituent of g[/T,%, but then this y = I,UT/(\;/ since QUT/(\;/E Irr(G) by (a). m

This leads to the following characterisation of the irreducible characters of Frobenius groups.

Theorem 23.4

Let G be a Frobenius group with Frobenius complement H and Frobenius kernel N. Then,

Irr(G) = Infgn (Irr(G/N)) L {1% | e lm(N\{1n}}

Note. Notice that the Frobenius complement H does not occur in the description of Irr(G). Thus,
choosing a different Frobenius complement would not change the result. Also notice that the second
set {¢15 | Y € Irr(N)\{1n}} may contain repetitions! In order to describe all characters of G which
do not have N in their kernel, it suffices to consider a set of representatives of the G-orbits for the
conjugation action of G on Irr(N)\{1n} instead of Irr(N)\{1n}.

Proof: It follows from Theorem 23.3 that it suffices to prove that Cs(n) < N for all n € N\{1}. So,
let n € N\{1} and suppose that Cs(n) £ N. Then, by the definition of N, there exists x € G such
that Cg(n) n *H # {1}. Now, conjugating by x~" and replacing n with x~"nx, we may assume that
Cc(n) nH # {1}. Thus, given 1 # h € Cs(n) n H, we have h € H n "H, which contradicts the fact that
H is a Frobenius complement. ]

Exercise 23.5

Compute the character table of the dihedral group D41 for all m € Z>4.

Exercise 23.6

Let p # g be two prime numbers. Let G be a non-abelian finite group such that |G| = pg. Compute
|Irr(G)| and x(1¢) for each x € Irr(G).

Exercise 23.7

Use Brauer’s Permutation Lemma to prove that:
(a) the character table X(S,) is an integral matrix for all n > 1;

(b) if G is a finite group of odd order, then the map Irr(G) — Irr(G), x — X admits a unique
fixed point, namely the trivial character 1.
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Chapter 8. Modules over arbitrary rings

In this chapter, we review important module-theoretic concepts and main results, which lie at the
foundations of module theory over arbitrary rings:

1. Simplicity and indecomposability of modules.
2. Schur’s Lemma: about homomorphisms between simple modules.
2. Nakayama’s Lemma: about an essential property of the Jacobson radical.

3. The Krull-Schmidt Theorem: about direct sum decompositions into indecomposable submodules.

Notation: throughout this chapter, unless otherwise specified, we let (R, +,-) denote an arbitrary as-
sociative ring, which we assume to be unital. We denote the neutral element for the multiplication by
1r or simply 1. Modules are assumed to be left modules.

24 (Ir)Reducibility and (in)decomposability
As already mentioned in Appendix A (see in particular Definition A.11) submodules and direct sums of
modules allow us to introduce the two main notions which enable us to break modules in elementary

pieces in order to simplify their study: simplicity and indecomposability.

Definition 24.1 (simple/irreducible module | indecomposable module | semisimple module)

(@) An R-module M is called reducible if it admits an R-submodule U such that 0 ¢ U < M.
An R-module M is called simple, or irreducible, if it is non-zero and not reducible.
We let Irr(R) denote a set of representatives of the isomorphism classes of simple R-modules.

(b) An R-module M is called decomposable if M possesses two non-zero proper submodules
My, My such that M = My @ M,. An R-module M is called indecomposable if it is non-zero
and not decomposable.

(c) An R-module M is called completely reducible or semisimple if it admits a direct sum
decomposition into simple R-submodules.
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Our goal for the forthcoming chapters is to investigate each of these concepts in more details.

Remark 24.2

Clearly any simple module is also indecomposable, resp. semisimple. However, the converse does
not hold in general.

Notice that Schur’s Lemma (see 5.1) is true over an arbitrary ring. It reads as follows.

Theorem 24.3 (ScHUR'S LEMMA)

(@) Let V, W be simple R-modules. Then:

() Endg(V) is a skew-field, and
(it) if V 22 W, then Homg(V, W) = 0.
(b) If K is an algebraically closed field, A is a K-algebra, and V' is a simple A-module such that

dimg V < o0, then
Enda(V) ={Aldy | Ae K} =K.

Proof: Replacing KG by R (resp. A), copy, word for word, the proof of Theorem 5.1. ]

25 The reqular module

The ring R itself maybe seen as an R-module via left multiplication in R. Similarly to Part I, where we
used the reqular representation in order to understand essential properties of the irreducible represen-
tations, we will be able to use this module to understand essential properties of the simple R-modules.

Definition 25.1 (The reqular module)

The reqular R-module, denoted R°, is the abelian group (R, +) endowed with the external compo-

sition law
Rx R — R° (r,m)—r-m.

Exercise 25.2
Prove that:
(@) the R-submodules of R° are precisely the left ideals of R;

(b) /< R is a maximal left ideal of R < R°/I is a simple R-module; and

(c) 1< R is a minimal left ideal of R < [ is simple when regarded as an R-submodule of R°.




Skript zur Vorlesung: Darstellungstheorie WS 2425, Leibniz Universitidt Hannover 77

26 The Jacobson radical and Nakayama's Lemma

Th

e Jacobson radical is one of the most important two-sided ideals of a ring. As we will see in the next

sections and chapters, this ideal carries a lot of information about the structure of a ring and that of

its

Pr

modules.

oposition-Definition 26.1 (Annihilator | Jacobson radical)

(a) Let M be an R-module. Then anng(M) :={re R|rm =0 ¥ m € M} is a two-sided ideal
of R, called the annihilator of M.

(b) The Jacobson radical of R is the two-sided ideal

J(R) := ﬂ anng(V)={xeR|1—axbe R* Ya,beR}.
Velrr(R)

(c) If V is a simple R-module, then there exists a maximal left ideal / < R such that V =~ R°/I
(as R-modules) and

I<R,

| maximal
left ideal

Proof: See Algebra Il / Exercise! ]

Exercise 26.2

(a) Prove that any simple R-module may be seen as a simple R/J(R)-module.

(b) Conversely, prove that any simple R/J(R)-module may be seen as a simple R-module.
[Hint: use a change of the base ring via the canonical morphism R — R/J(R).]

(c) Deduce that R and R/J(R) have the same simple modules (i.e. when regarded as additive
abelian groups).

Th

eorem 26.3 (NAKAYAMA'S LEMMA)

If M is a finitely generated R-module and J(R)M = M, then M = 0.

Proof: If M = 0, then the claim is trivial. So, assume M # 0 and let {mq,..., mp} (n € Zso) be a set

of generators for M which is minimal in the sense that none of its proper subsets generates M. Since
J(R)M = M, there exist elements r; € J(R) for i = 1,...,n such that my = Y}, r;m; and hence

n
(1 — r1)m1 = Zrim,-
i=2

Now, Proposition-Definition 26.1(b) implies that 1 — ry € R*. Thus, letting v := (1 — ry)~", we have

n
m=1g-m =u(l—r)m = Zurim;,
i=2

which is a contradiction to the minimality of {m,..., mp}. |
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Remark 26.4

(a) One often needs to apply Nakayama’s Lemma to a finitely generated quotient module M/U,
where U is an R-submodule of M. In that case the result may be interpreted as follows:

M=U+J(RM — U=M.

(b) The hypothesis that the module M be finitely generated is necessary. See Exercise 27.2(a)(ii)
below.

27 Indecomposability and the Krull-Schmidt Theorem

We now consider the notion of indecomposability in more details. Our first aim is to prove that inde-
composability can be recognised at the endomorphism algebra of a module.

Definition 27.1
A ring R is said to be local ;<= R\R* is a two-sided ideal of R.

Example 16
Any field K is local because K\K* = {0} by definition. The zero ring is not local.

Exercise 27.2
(a) Let p be a prime number and R := {§ € Q| p { b}.

(i) Prove that R\R* = {§ € R | p|a} and deduce that R is local.
(i) Assume p =2 and consider the R-module M := Q. Prove that J(R)M = M.

a1 ax ... ap
0 ay ... ap,—

(b) Let K be a field and let R:= {Ae M,(K) [A={ . 7|}
00 .. a

Prove that R\R* = {A€ R | a; = 0} and deduce that R is local.

Proposition 27.3
Let R be a ring. Then TFAE:

(@) R is local;
(b) R\R* = J(R), i.e. J(R) is the unique maximal left ideal of R;
() R/J(R) is a skew-field.

Proof: Set N := R\R*.
(@)=(b): Clear: I < R proper left ideal = / < N. Hence, by Proposition-Definition 26.1(c),
JR)= () IcN.

I<IR,
| maximal
left ideal
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Now, by (a) N is an ideal of R, hence N must be a maximal left ideal, even the unique one. It
follows that N = J(R).

: If J(R) is the unique maximal left ideal of R, then in particular R # 0 and R/J(R) # 0. So let

re RU(R) 2 R*. Then obviously r + J(R) € (R/J(R))*. It follows that R/J(R) is a skew-field.

: Since R/J(R) is a skew-field by (c), R/J(R) # 0, so that R # 0 and there exists a € R\J(R).

Moreover, again by (c), a + J(R) € (R/J(R))*, so that 3b € R\J(R) such that
ab+J(R) =1+ J(R) e R/I(R)

Therefore, 3 ¢ € J(R) such that ab = 1—c, which is invertible in R by Proposition-Definition 26.1(b).
Hence 3d € R such that abd = (1 — ¢)d =1 = a € R*. Therefore R\J(R) = R*, and it follows
that R\R* = J(R) which is a two-sided ideal of R. -

Proposition 27.4 (FITTING'S LEMMA)

Let M be an R-module which has a composition series and let ¢ € Endg(M) be an endomorphism
of M. Then there exists n € Z~¢ such that

(i) " (M) = @"t{(M) for every i > 1;
(ii) ker(<p”) = ker((Pn—H) for every i>1;and
(itt) M = " (M) ® ker(¢").

Proof: By Corollary E.4 the module M satisfies both A.C.C. and D.C.C. on submodules. Hence the two
chains of submodules

p(M) 2 (M) 2 ..,
ker(g) < ker(¢?) < ...

eventually become stationary. Therefore we can find an index n satisfying both (i) and (it).
Exercise: Prove that M = ¢"(M) @ ker(¢"). |

Proposition 27.5

Let M be an R-module which has a composition series. Then:

M is indecomposable <= Endr(M) is a local ring.

Proof: “=": Assume that M is indecomposable. Let ¢ € Endg(M). Then by Fitting’s Lemma there exists

n € Z-o such that M = ¢"(M) @ ker(¢"). As M is indecomposable either ¢"(M) = M and
ker(¢") = 0 or ¢"(M) = 0 and ker(¢") = M.

- In the first case ¢ is bijective, hence invertible.
- In the second case ¢ is nilpotent.

Therefore, N := Endg(M)\ Endg(M)* = {nilpotent elements of Endg(M)}.
Claim: N is a two-sided ideal of Endg(M).
Let ¢ € N and m € Z-¢ minimal such that ¢ = 0. Then

" (pp) =0 = (pp)e” "' V peEndg(M).

As "1 # 0, pp and pe cannot be invertible, hence @p, pp € N.
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Next let @, p e N. If ¢ + p =: ¢y were invertible in Endg(M), then by the previous argument we
would have ¢~'p, =@ € N, which would be nilpotent. Hence

o= (Y —p)=ldu—yp

would be invertible.

(Indeed, =" p nilpotent = (Idy —¢ ' p)(Idy +¢ o+ (¢ p)2 + -+ + (Y~ p)?~ ") = Idy, where
a is minimal such that (¢~"p)? = 0.)

This is a contradiction. Therefore ¢ + p € N, which proves that N is an ideal.

Finally, it follows from the Claim and the definition that Endg(M) is local.

“<": Assume M is decomposable and let M, M, be proper submodules such that M = M; @ M,. Then
consider the two projections

P M1 @MQ — M1 @Mz, (m1,m2) > (m1,0)
onto M; along M, and
J0) . M1 @Mz I M1 @Mz, (m1, mz) [and (0, mz)

onto M, along M. Clearly my, 7, € Endgr(M) but 711, 712 ¢ Endg(M)™ since they are not surjective
by construction. Now, as m, = ldy —711 is not invertible it follows from the characterisation of the
Jacobson radical of Proposition-Definition 26.1(b) that 7ty ¢ J(Endr(M)). Therefore

Endg(M)\ Endg(M)* # J (Endg(M))

and it follows from Proposition 27.3 that Endg(M) is not a local ring. |

Next, we want to be able to decompose R-modules into direct sums of indecomposable submodules. The
Krull-Schmidt Theorem will then provide us with certain uniqueness properties of such decompositions.

Proposition 27.6

Let M be an R-module. If M satisfies either A.C.C. or D.C.C., then M admits a decomposition into
a direct sum of finitely many indecomposable R-submodules.

Proof: Let us assume that M is not expressible as a finite direct sum of indecomposable submodules. Then
in particular M is decomposable, so that we may write M = My @ W, as a direct sum of two proper
submodules. W.Lo.g. we may assume that the statement is also false for Wj. Then we also have a
decomposition Wj = M, ® W,, where M, and W, are proper sumbodules of W, with the statement being
false for W,. Iterating this argument yields the following infinite chains of submodules:

WyaW,2W; 2.,
McMeMcMeMaeaM <.

The first chain contradicts D.C.C. and the second chain contradicts A.C.C.. The claim follows. [ |

Theorem 27.7 (Krull-Schmidt)

Let M be an R-module which has a composition series. If

M=M@ - OM, =M @D ---®M, (n,n" € Z~y)

are two decomposition of M into direct sums of finitely many indecomposable R-submodules, then
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n = n’, and there exists a permutation 7 € &, such that M; =~ M;/r(i) for each 1 < i < n and

n
MZM,/T(U@-"@M,/T(,)@‘(—?HM,- for every 1 < r < n.
j=r

Proof: For each 1 <i<n let
m - M=M@® - --&M, > M,m+...+m, — m;
be the projection on the i-th factor of the first decomposition, and for each 1 < j < n’ let
G M=M@S--- @M, — M, my+ ...+ m, — m]
be the projection on the j-th factor of the second decomposition.
Claim: if ¢y € Endg(M) is such that my o ¢|M1 : My — My is an isomorphism, then
M=yM)BM,@:--®M, and y(M;y) = M.

Indeed: By the assumption of the claim, both ¢1|,, : My — (My) and 71|y, : Y(Mr) — My must be
isomorphisms. Therefore ¢(My) n ker(;r1) = 0, and for every m € M there exists m} € y(My) such that
71 (m) =y (m}), hence m — m) € ker(7). It follows that

M = (M) + ker(m) = (M) @ ker(m) = Y(M) BM @ --- O M, .

Hence the Claim holds.

Now, we have Idy = 27;1 j, and so ldy, = 27;1 711 0 Yj|py, € Endr(My). But as M has a composition
series, so has M, and therefore Endgr(M) is local by Proposition 27.5. Thus if all the m o ¢y, €
Endr(My) are not invertible, they are all nilpotent and then so is Idys,, which is in turn not invertible.
This is not possible, hence it follows that there exists an index j such that

g1 © ¢’j|M¢ : M1 — M1

is an isomorphism and the Claim implies that M = (;(My) @M, @ --- @ M, and ;(My) = M.
We then set (1) := j. By definition ;(M;) € M} as M; is indecomposbale, so that

(M) = Mj = My

Finally, an induction argument (Exercise!) yields:

M=My® M, ® D M,
j=r+1

mit /\/I;T([) >~ M; (1 <i<r). In particular, the case r = n implies the equality n = n’.

81



Chapter 9. The Structure of Semisimple Algebras

In this chapter we study an important class of rings: the class of rings R which are such that any
R-module can be expressed as a direct sum of simple R-submodules. We study the structure of such
rings through a series of results essentially due to Artin and Wedderburn. At the end of the chapter
we will assume that the ring is a finite dimensional algebra over a field and start the study of its
representation theory.

Notation: throughout this chapter, unless otherwise specified, we let (R, +, -) denote a unital associative

ring, and we recall that Irr(R) denotes a set of representatives for the simple R-modules and R° is the
regular module.

28 Semisimplicity of Rings and Modules

To begin with, we prove three equivalent characterisations for the notion of semisimplicity.

Proposition 28.1

If M is an R-module, then the following assertions are equivalent:

(@) M is semisimple, i.e. M =@, S; for some family {S;}ic/ of simple R-submodules of M;

iel
(b) M = >, Si for some family {S;}ic/ of simple R-submodules of M;

(c) every R-submodule M; < M admits a complement in M, i.e. 3 an R-submodule M, € M
such that M = My & M.

Before we prove of this result, it is useful to note the following property of semisimple modules.

Remark 28.2

Notice that if an R-module M satisfies Condition (c), then so does any R-submodule of M. (Take
a complement in M and intersect with the submodule considered.) In other words, any submodule
of a semisimple module is again semisimple.

Proof:
(@)=(b): is trivial.

82
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(b)=(c): Write M = >, Si, where S; is a simple R-submodule of M for each i € I. Let My < M be an
R-submodule of M. Then consider the family, partially ordered by inclusion, of all subsets J < /
such that

(1) iy Si is a direct sum, and
(2) Mi A Y, Si=0.

Clearly this family is non-empty since it contains the empty set. Thus Zorn’s Lemma yields the
existence of a maximal element Jy. (Upper bounds are given by unions.) Now, set

M =M+ S=M®> S,

i€y i€l

where the second equality holds by (1) and (2). Therefore, it suffices to prove that M = M’, ie.
that S; = M’ for every i € I. But if j € I is such that S; & M’, the simplicity of S; implies that
S;n M’ =0 and it follows that

M’+5,—=M1@<Zs,->@sj

i€l
in contradiction with the maximality of Jo. The claim follows.
(b)=(a): follows from the argument above with M; = 0.

(c)=(b): Let M, be the sum of all simple R-submodules in M. By (c) there exists a complement M, € M to
M, t.e. such that M = M; & M.

- Case 1: M, = 0. We are done by definition of M.

- Case 2: M, # 0. We prove that this case cannot happen. In fact, it is enough to prove that

M, contains a simple R-submodule, say L, since then L € M, by definition of My, which is a
contradiction.
So let m € My, m # 0. By Remark 28.2 enough to treat the case M, = Rm. By Zorn's
Lemma, there exists an R-submodule N of M,, maximal w.r.t. the property that m ¢ N. Take a
(necessarily non-zero) R-submodule N’ such that My, = N@N'. Then N’ is simple. Indeed, if
N” is a non-zero submodule of N’, then N @® N” must contain m by the maximality of N and
so N@® N" = M,, which implies that N’ = N/, as required.

It follows that M, = 0, proving that M = M, as required. m

Example 17
(@) The zero module is semisimple.

(b) If S4,...,S, are simple R-modules, then their direct sum S1 @ ... ® S, is semisimple by
definition.

(c) The following exercise shows that there exists modules which are not semisimple.
Exercise: Let K be a field and let A be the K-algebra {(ad 001) | a1, a0 € K}. Consider the
A-module V := K2, where A acts by left matrix multiplication. Prove that:

(1) {(5) | x e K} is a simple A-submodule of V; but
(2) V is not semisimple.

(d) Exercise: Prove that any submodule and any quotient of a semisimple module is again
semisimple.
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Theorem-Definition 28.3 (Semisimple ring)

A ring R satisfying the following equivalent conditions is called semisimple.
(@) All short exact sequences of R-modules split.
(b) All R-modules are semisimple.
(c) Al finitely generated R-modules are semisimple.

(d) The reqgular left R-module R° is semisimple, and is a direct sum of a finite number of minimal
left ideals.

Proof: First, (a) and (b) are equivalent as a consequence of Lemma A.14 and the characterisation of semisim-
ple modules given by Proposition 28.1(c). The implication (b) = (c) is trivial, and it is also trivial that
(c) implies the first claim of (d), which in turn implies the second claim of (d). Indeed, if R° = @, L; for
some family {L;}ic/ of minimal left ideals. Then, by definition of a direct sum, there exists a finite number
of indices i1,...,i, € | such that 1p = x;; + ... + x;, with Xi; € L,'l. for each 1 < j < n. Therefore each
a € R may be expressed in the form

G=U'1R=GX[1+...+GX[H

and hence R° = L;, + ...+ L;,.

Therefore, it remains to prove that (d) = (b). So, assume that R satisfies (d) and let M be an arbitrary
non-zero R-module. Then write M =3} _,, R-m. Now, each cyclic submodule R - m of M is isomorphic

to an R-submodule of R°, which is semisimple by (d). Thus R-m is semisimple as well by Example 17(d).
Finally, it follows from Proposition 28.1(b) that M is semisimple. ]

Example 18

Fields are semisimple. Indeed, if V is a finite-dimensional vector space over a field K of dimension n,
then choosing a K-basis {e1,---,e,} of V yields V = Ke1 @ ... ® Ke,, where dimg(Ke;) = 1,
hence Ke; is a simple K-module for each 1 < i < n. Hence, the claim follows from Theorem-
Definition 28.3(c).

Corollary 28.4

Let R be a semisimple ring. Then:
(@) R° has a composition series;

(b) R is both left Artinian and left Noetherian.

Proof:

(@) By Theorem-Definition 28.3(d) the reqgular module R° admits a direct sum decomposition into a
finite number of minimal left ideals. Removing one ideal at a time, we obtain a composition series

for R°.
(b) Since R° has a composition series, it satisfies both D.C.C. and A.C.C. on submodules by Corol-
lary E.4. In other words, R is both left Artinian and left Noetherian. m

Next, we show that semisimplicity is detected by the Jacobson radical. This leads us to introduce a
slightly weaker concept: the notion of J-semisimplicity.
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Definition 28.5 (/-semisimplicity)

A ring R is said to be J-semisimple if J(R) = 0.

Exercise 28.6

Let R = Z. Prove that J(Z) = 0, but not all Z-modules are semisimple. In other words, Z is
J-semisimple but not semisimple.

Proposition 28.7

Any left Artinian ring R is J-semisimple if and only if it is semisimple.

Proof: “=": Assume R # 0 and R is not semisimple. Pick a minimal left ideal /[y <R (e.g. a minimal element
of the family of non-zero principal left ideals of R). Then 0 # Iy # R since Iy seen as an R-module
is simple.

Claim: /[y is a direct summand of R°.

Indeed: since

h#0=J(R)= () I

I<R,
lehideat

there exists a maximal left ideal my <t R which does not contain fy. Thus [y n my = {0} and so we
must have R° = [y @ my, as R/my is simple. Hence the Claim.
Notice that then my # 0, and pick a minimal left ideal /1 in mg. Then 0 # /1 # myg, else R would
be semisimple. The Claim applied to /; yields that /; is a direct summand of R°, hence also in my.
Therefore, there exists a non-zero left ideal my such that mg = /1 @ my. Iterating this process, we
obtain an infinite descending chain of ideals

My 2my 2my 2 -+

contradicting D.C.C. and proving the claim.

“<": Conversely, if R is semisimple, then R° =~ R/J(R) @ J(R) by Theorem-Definition 28.3 and so as
R-modules,

J(R) =J(R) - (R/J(R)®J(R)) = J(R) - J(R)
so that by Nakayama’s Lemma J(R) = 0.

|
Proposition 28.8
The quotient ring R/J(R) is J-semisimple.
Proof: Since by Exercise 26.2 the rings R and R := R/J(R) have the same simple modules (seen as abelian
groups), Proposition-Definition 26.1(a) yields
JR)= () amgz(V)= [ annr(V)+J(R)=J(R)/J(R)=0.
Velrr(R) Velrr(R) |

29 The Artin-Wedderburn Structure Theorem

The next step in analysing semisimple rings and modules is to sort simple modules into isomorphism
classes. We aim at proving that each isomorphism type of simple modules actually occurs as a direct
summand of the reqular module. The first key result in this direction is the following proposition:



Skript zur Vorlesung: Darstellungstheorie WS 2425, Leibniz Universitidt Hannover 86

Proposition 29.1

Let M be a semisimple R-module. Let {M;};/ be a set of representatives of the isomorphism classes
of simple R-submodules of M and for each i € / set

H; = Z V.

VM
V%Mi

Then the following statements hold:
) M= @ Hi:
(ii) every simple R-submodule of H; is isomorphic to M;;
(itt) Homg(H;, Hy) = {0} if i # i’; and

(v) it M = (—Bjej Vj is an arbitrary decomposition of M into a direct sum of simple submodules,

then
Fie 3 V= @ V- Ho
jel jel
Vj%/\/’l‘ Vj;Mz’

Proof: We shall prove several statements which, taken together, will establish the theorem.

Claim 1: If M = @, V; as in (iv) and W is an arbitrary simple R-submodule of M, then 3 j € J such
that W = V;.

Indeed: if {m; : M = @,;;V; — Vj}jes denote the canonical projections on the j-th summand, then
3 j € J such that ;(W) # 0. Hence x|, : W — Vj is an R-isomorphism as both W and V; are simple.

Claim 2: If M = P, V; as in (iv), then M = D

I:Ii is isomorphic to M.

il H; and for each i € /, every simple R-submodule of

Indeed: the 1st statement of the claim is obvious and the 2nd statement follows from Claim 1 applied
to H,‘.
Claim 3: If W is an arbitrary simple R-submodule of M, then there is a unique i € [ such that W < H;.

Indeed: it is clear that there is a unique i € | such that W =~ M;. Now consider w € W\{0} and write
w = >l W € @, V; with w; € V;. The proof of Claim 1 shows that if any summand w; # 0, then

7;(W) # 0, and hence W = V;. Therefore w; = 0 unless V; = M, and hence w € H;, so that W < H,.
Claim 4: Homg(H;, Hy) = {0} if i = i'.

Indeed: if 0 # f € Homg(H;, Hy) and i # i/, then there must exist a simple R-submodule W of H; such
that f(W) # 0, hence as W is simple, fly : W — f(W) is an R-isomorphism. It follows from Claim 2,
that f(W) is a simple R-submodule of Hy isomorphic to M;. This contradicts Claim 2 saying that every
simple R-submodule of FI[/ is isomorphic to My % M,.

Now, it is clear that Ifli C H; by definition. On the other hand it follows from Claim 3, that H; < /t/,-.
Hence H; = H; for each i € I, hence (iv). Then Claim 2 yields (i) and (ii), and Claim 4 yields (iii). ]

We give a name to the submodules {H;};; defined in Propostion 29.1:
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Definition 29.2

If M is a semisimple R-module and S is a simple R-module, then the S-homogeneous component
of M, denoted S(M), is the sum of all simple R-submodules of M isomorphic to S.

Exercise 29.3

Th

Let R be a semisimple ring. Prove the following statements.

(@) Every non-zero left ideal / of R is generated by an idempotent of R, in other words 3 e e R
such that e> = e and | = Re. (Hint: choose a complement / for /, so that R° = I ® I’ and
write 1 = e + €’ with e € / and e’ € I'. Prove that | = Re.)

(b) If I is a non-zero left ideal of R, then every morphism in Homg(/, R°) is given by right
multiplication with an element of R.

(c) If e € R is an idempotent, then Endg(Re) = (eRe)°P (the opposite ring) as rings via the map
f — ef(e)e. In particular Endg(R°) = R via f — f(1).

(d) A left ideal Re generated by an idempotent e of R is minimal (i.e. simple as an R-module) if
and only if eRe is a division ring. (Hint: Use Schur’s Lemma.)

(e) Every simple left R-module is isomorphic to a minimal left ideal in R, i.e. a simple R-
submodule of R°.

eorem 29.4 (Wedderburn)

If R is a semisimple ring, then the following assertions hold.

(@) If Selrr(R), then S(R°) # 0. Furthermore,

Irr(R)| < oo.

(b) We have
R° = @ S(R°),

Selrr(R)

where each homogenous component S(R°) is a two-sided ideal of R and S(R°)T(R°) =0 if
S#Telr(R).

(c) Each S(R°) is a simple left Artinian ring, the identity element of which is an idempotent
element of R lying in Z(R).

Proof:

(@) By Exercise 29.3(e) every simple left R-module is isomorphic to a minimal left ideal of R, i.e. a
simple submodule of R°. Hence if S € Irr(R), then S(R°) # 0. Now, by Theorem-Definition 28.3,
the reqular module admits a decomposition

R -@Y
j€l

into a direct sum of a finite number of minimal left ideals V; of R, and by Claim 1 in the proof of
Proposition 29.1 any simple submodule of R° is isomorphic to V; for some j € J. Hence, we have
[Irr(R)] < |J] < o0
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(b)

Proposition 29.1(iv) also yields S(R°) = @V,;S V; and Proposition 29.1(i) implies that

RO= P S(R).

Selrr(R)

Next notice that each homogeneous component is a left ideal of R, since it is by definition a sum of
left ideals. Now let L be a minimal left ideal contained in S(R®), and let x € T(R°) fora T € Irr(R)
with S # T. Then Lx € T(R®) and because

@ R°— R°, m — mx

is an R-endomorphism of R°, then either Lx = ¢,(L) is zero or it is again a minimal left ideal,
isomorphic to L. However, as S # T, we have Lx = 0. Therefore S(R°)T(R°) = 0, which implies
that S(R°) is also a right ideal, hence two-sided.

Part (b) implies that the homogeneous components are rings. Then, using Exercise 29.3(a), we may

write
1r = Z es,
Selrr(R)

where S(R°) = Res with es idempotent. Since S(R°) is a two-sided ideal, in fact we have
S(R°) = Res = esR. It follows that es is an identity element for S(R°).

To see that es is in the centre of R, consider an arbitrary element a € R and write a = ZTelrr(R) ar
with a7 € T(R®°). Since S(R°)T(R°) =0if S # T € Irr(R), we have eser = 0sres. Thus, as et
is an identity element for the T-homogeneous component, we have

esa = es Z ar = es Z erar = Z eserar

Telrr(R) Telrr(R) Telrr(R)
= ésdas
= dses
= Z areres = ( Z arer)es = ( ar)es = aes.
Telrr(R) Telrr(R) Telrr(R)

Finally, if L # 0 is a two-sided ideal in S(R°), then L must contain all the minimal left ideals of

R isomorphic to S as a consequence of Exercise 29.3 (check it!). It follows that L = S(R°) and
therefore S(R°) is a simple ring. It is left Artinian, because it is semissimple as an R-module.

S_cholium 29.5

(i) es € Z(R) for each S € Irr(R);
(i) eser = dstes forall S, T € Irr(R);

(i) 1r = ZSeIrr(R) es,

(iv) R = @5€|rr(R) Res, where each Res is a simple ring.

88

If R is a semisimple ring, then there exists a set of idempotent elements {es € R| S € Irr(R)} such
that:

Idempotents satisfying Property (i) are called central idempotents, and idempotents satisfying Prop-
erty (it) are called orthogonal. So, we say that {es € R | S e Irr(R)} is a set of pairwise distinct
central idempotents of R.
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Remark 29.6

Remember that if R is a semisimple ring, then the reqular module R° admits a composition series.
Therefore, it follows from the Jordan-Holder Theorem that

RR= @ SR)= P é‘és

Selrr(R) Selrr(R) i=1

for uniquely determined integers ns € Z-.

Theorem 29.7 (Artin-Wedderburn)

If R is a semisimple ring, then, as a ring,

Rx= [] Mas(Ds),
Selrr(R)

where Ds := Endg(S)°P is a division ring.

Before we proceed with the proof of the theorem, first recall that if we have a direct sum decomposition
U=U® --®U, (r e Z~p) of an R-module U, then Endg(U) is isomorphic to the ring of r x r-matrices
in which the (i, ) entry lies in Homg(U;, U;). This is because any R-endomorphism ¢ : U — U may

be written as a matrix of components ¢ = (¢;j)1<ij<r Where ¢;; : U; e,y 2,y Pk Ui, and when

viewed in this way R-endomorphisms compose in the manner of matrix multiplication. (Known from
linear algebra if R is a field. The same holds over an arbitrary ring R.)

Proof: By Exercise 29.3(c), we have
Endr(R°) = R

as rings. On the other hand, since Homz(S(R®), T(R°)) = 0 for S % T (e.g. by Schur’s Lemma, or by
Proposition 29.1), Wedderburn's Theorem and the above observation yield

Endr(R°) = Endr ( @ S(R%)) =~ [] Endr(S(R*))

Selrr(R) Selrr(R)
where Endgr(S(R°)) = M, (Endr(S)) = M, (Endg(S5)°)°P. Therefore, setting Ds := Endg(S)°P yields
the result. For by Schur’s Lemma Endg(S) is a division ring, hence so is the opposite ring. ]

30 Semisimple Algebras and Their Simple Modules

From now on we leave the theory of modules over arbitrary rings and focus on finite-dimensional
algebras over a field K. Algebras are in particular rings, and since K-algebras and their modules
are in particular K-vector spaces, we may consider their dimensions to obtain further information. In
particular, we immediately see that finite-dimensional K-algebras are necessarily left Artinian rings.
Furthermore, the structure theorems of the previous section tell us that if A is a semisimple algebra
over a field K, then )
S
A= P SA)= P Ps
Selrr(A) Selrr(A) i=1
where ng corresponds to the multiplicity of the isomorphism class of the simple module S as a direct
summand of A° in any given decomposition of A° into a finite direct sum of simple submodules. We shall
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see that over an algebraically closed field the number of simple A-modules is detected by the centre
of A and also obtain information about the simple modules of algebras, which are not semisimple.

Exercise 30.1

Let A be an arbitrary K-algebra over a commutative ring K.
(a) Prove that Z(A) is a K-subalgebra of A.

(b) Prove that if K is a field and A # 0, then K — Z(A),A — Al4 is an injective K-
homomorphism.

(c) Prove that if A = M,(K), then Z(A) = Kl,, i.e. the K-subalgebra of scalar matrices. (Hint:
use the standard basis of M, (K).)

(d) Assume A is the algebra of 2 x 2 upper-trianqular matrices over K. Prove that

Z(AA) ={(§%) |aeK} .

We obtain the following Corollary to Wedderburn's and Artin-Wedderburn’s Theorems:

Theorem 30.2

Let A be a semisimple finite-dimensional algebra over an algebraically closed field K, and let
S e lrr(A) be a simple A-module. Then the following statements hold:

(a) S(A°) = My, (K) and dim (S(A%)) = n2;
(b) dimk(S) = ns;

() dimk(A) = Xsepr(ay dimk (S)%;

(d) [Irr(A)| = dimk (Z(A)).

Proof:

(a) Since K = K, Schur’s Lemma implies that Enda(S) = K. Hence the division ring Ds in the
statement of the Artin-Wedderburn Theorem is Ds = Enda(S)® =~ K° = K. Hence Artin-
Wedderburn (and its proof) applied to the case R = S(A°) yields S(A°) = M, (K). Hence
dimg (S(A°)) = n.

(b) Since S(A°) is a direct sum of ns copies of S, (a) yields:

n% = ns-dimg(S) =— dimk(S) = ns

(c) follows directly from (a) and (b).
(d) Since by Artin-Wedderburn and (a) we have A = [[s¢ 4y M (K), clearly

ZA) = [] ZMas(K) = ] Klas,

Selrr(A) Selrr(A)

where dimg (Kl,,) = 1. The claim follows. -
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Corollary 30.3

Let A be a finite-dimensional algebra over an algebraically closed field K. Then,

[Irr(A)] = dimk (Z(A/J(A))) -

Proof: We have observed that A and A/J(A) have the same simple modules (see Exercise 26.2), hence
[Irr(A)] = |lrr(A/J(A))|. Moreover, the quotient A/J(A) is J-semisimple by Proposition 28.8, hence
semisimple by Proposition 28.7 because finite-dimensional algebras are left Artinian rings. Therefore it
follows from Theorem 30.2(d) that

[Irr(A)] = | Irr(A/J(A))| = dimgk (Z(A/](A))) .

Corollary 30.4

Let A be a finite-dimensional algebra over an algebraically closed field K. If A is commutative, then
any simple A-module has K-dimension 1.

Proof: First assume that A is semisimple. As A is commutative, A = Z(A). Hence parts (d) and (c) of
Theorem 30.2 yield
[Irr(A)] = dimgc(A) = ) dimk(S)?,

Selrr(A) 1

which forces dimg (S) = 1 for each S € Irr(A).

Now, if A is not semissimple, then again we use the fact that A and A/J(A) have the same simple modules
(that is seen as abelian groups). Because A/J(A) is semisimple and also commutative, the argument
above tells us that all simple A/J(A)-modules have K-dimension 1. The claim follows. |

Finally, we emphasise that in this section the assumption that the field K is algebraically closed is in
general too strong and that it is possible to weaken this hypothesis so that Theorem 30.2, Corollary 30.3
and Corollary 30.4 still hold.

Indeed, if K = K is algebraically closed, then Part (b) of Schur’s Lemma tells us that Enda(S) = K
for any simple A-module S. This is the crux of the proof of Theorem 30.2. The following terminology
describes this situation.

Definition 30.5
Let A be a finite-dimensional K-algebra. Then:

(@) Ais called split if Enda(S) =~ K for every simple A-module S; and
(b) an extension field K’ of K is called a splitting field for A if the K’-algebra K’ ®x A is split.

Of course if A is split then K itself is a splitting field for A.

Remark 30.6

In fact for a finite-dimensional K-algebra A, the following assertions are equivalent:

(@) A is split;
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(b) the product, for S running through Irr(A), of the structural homomorphisms A — Endk(S)
(mapping a € Ato the K-linear map S — S, m — am) induces an isomorphism of K-algebras

AlJA) = T] Endk(S).

Selrr(A)

This is a variation of the Artin-Wedderburn Theorem we have seen in the previous section.

Exercise 30.7

Let K be a field and let A # 0 be a finite-dimensional K-algebra. The aim of this exercise is to
prove that J(A) is the unique maximal nilpotent left ideal of A and J(Z(A)) = J(A) n Z(A).

Proceed as follows:

(a) Prove that there exists n € Z~g such that J(A)" = J(A)"*".

[Hint: consider dimensions.]
(b) Apply Nakayama’s Lemma to deduce that J(A)" = 0 and conclude that J(A) is nilpotent.

(c) Prove that if / is an arbitrary nilpotent left ideal of A, then I < J(A).
[Hint: here you should see J(A) as the intersection of the annihilators of the simple A-modules.]

(d) Use the nilpotency of the Jacobson radical to prove that J(Z(A)) = J(A) n Z(A).




Chapter 10. Back to the Group Algebra

Our aim in this chapter is to understand what the general theory of semisimple rings and the Artin-
Wedderburn theorem bring to the theory of representations of finite groups.

Notation. Throughout this chapter, unless otherwise specified, we let (G, -) denote a finite group and

K be a field. All KG-modules considered are assumed to be finite-dimensional over K. This implies,
in particular, that they are finitely generated as KG-modules.

31 The Augmentation ldeal

Finally we introduce an ideal of KG which encodes a lot of information about KG-modules.

Proposition-Definition 31.1 (The augmentation ideal)

The map € : KG — K, decx\gg — dec Ag is @ homomorphism of K-algebras, called augmen-
tation homomorphism (or map). Its kernel ker(e) =: /(KG) is an ideal of KG and it is called the
augmentation ideal of KG. The following statements hold:

(@) I(KG) ={Xgec A9 € KG | Xye Ag = 0} = annkq(K) and if K is a field /(KG) 2 J(KG);
(b) KG/I(KG) = K as K-algebras;
(c) I(KG) is a K-vector space of dimension |G|-1 with K-basis {g — 1| g € G\{1}}.

Proof: First, observe that the map ¢ : KG — K is the unique extension by K-linearity of the trivial
representation G — K* < K, g — 1¢ to KG, hence is an algebra homomorphism and its kernel is an
ideal of KG. Moreover, each x € KG acts on K as multiplication by €(x), and so acts as 0 precisely
when g(x) = 0.

(@) We have I(KG) = ker(e) = {X,ccAqg € KG | X,ccAg = 0} by definition of £. The second
equality follows from the observation above as anng;(K) = {x € KG | x- K = 0}. If K is a field,
then the trivial KG-module K is simple, hence

amni(K)2 (1] annka(V) = J(KG).
Velrr(KG)

(b) Since ¢ is clearly surjective, the claim is immediate from the 1st isomorphism theorem.
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(c) Let X pecAgg € I(KG). Then 3 Aq = 0 and hence
Z)tgg:2/\99*02219972)\9:2)@(971): Z Aglg = 1),
geG geG geG geG geG geG\{1}

which proves that the set {g — 1 | g € G\{1}} generates /(KG) as a K-module. The above
computations also show that:

Do Alg=1)=0 — > Ag=0
geG\{1} 9€G

in which case Ay = 0V g € G as G is a K-basis of KG. This proves that the set {g—1| g € G\{1}}

is also K-linearly independent, hence a K-basis of /(KG). -

Lemma 31.2
If K is a field of positive characteristic p and G is p-group, then /(KG) = J(KG).

Exercise 31.3 (Proof of Lemma 31.2. Proceed as indicated.)

(@) Recall that an ideal / of a ring R is called a nil ideal if each element of / is nilpotent. Accept
the following result: if / is a nil left ideal in a left Artinian ring R then / is nilpotent.

(b) Prove that g — 1 is a nilpotent element for each g € G\{1} and deduce that /(KG) is a nil
ideal of KG.

(c) Deduce from (a) and (b) that /(KG) < J(KG) using Exercise 30.7
(d) Conclude that /(KG) = J(KG) using Proposition-Definition 31.1.

32 Semisimplicity and Maschke’s Theorem

Our first aim is to reformulate the proof of Maschke's Theorem in module-theoretic terms.

Theorem 32.1 (Maschke)
If char(K) 1 |G|, then KG is a semisimple K-algebra.

Proof: By Theorem-Definition 28.3, we need to prove that every s.es. 0 — L LMY N0 of KG-
modules splits. However, the field K is clearly semisimple (again by Proposition-Definition 28.3). Hence
any such sequence regarded as a s.e.s. of K-vector spaces and K-linear maps splits. Soletg: N — M
be a K-linear section for ¢ and set

~

U:=|%|decg_1ag: N — M
N Y g olgn).
We may divide by |G|, since char(K) { |G| implies that |G| € K*. Now, if h € G and n € N, then

o(hn) CZ}g”fghn GZgh a(ghn) = ha(n)
Gl & Gl =
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and
- 1 _ ¥ KG-i
¢U(n):m2¢(g 'a(gn)) m|G|Zg yo(g |G|Zg gn=n,
geCG gelG geG
where the last-but-one equality holds because g = Idy. Thus ¢ is a KG-linear section for (. ]
Example 19

If K = C is the field of complex numbers, then CG is a semisimple C-algebra, since char(C) = 0.

[t turns out that the converse to Maschke's theorem also holds, and follows from the properties of the
augmentation ideal.

Theorem 32.2 (Converse of Maschke’s Theorem)
If KG is a semisimple K-algebra, then char(K) 1 |G.

Proof: Set char(K) =: p and let us assume that p | |G]. In particular p must be a prime number. We have
to prove that then KG is not semisimple.

Claim: If 0 # V < KG is a KG-submodule of KG°, then V n I[(KG) # 0.
Indeed: Let v =3} ;A9 € V\{0}. If (v) = 0 we are done. Else, set t:= 3, h. Then

= > 1=1G=0
heG

as char(K) | |G|. Hence t € I(KG). Now consider the element tv. On the one hand tv e V since V is a
submodule of KG°, and on the other hand tv e /(KG)\{0} since

tv_<,,25h)(26)\gg) Z (Tk-Ag)hg= Z(ZA)X—Z )x:>s(tv):25(v):|6|e(v):

xeG xeG

The Claim implies that /(K G), which is a KG-submodule by definition, cannot have a complement in KG°.
Therefore, by Proposition 28.1, KG° is not semisimple and hence KG is not semisimple by Theorem-
Definition 28.3. ]

In the case in which the field K is algebraically closed, or a splitting field for KG, the following exercise
offers a second proof of the converse of Maschke’s Theorem exploiting the Artin-Wedderburn Theorem
(Theorem 30.2).

Exercise 32.3 (Proof of the Converse of Maschke’s Theorem for K splitting field for KG.)

Assume K is a field of positive characteristic p with p | |G| and is a splitting field for KG. Set

Ti=(2gec k-
(@) Prove that we have a series of KG-submodules given by KG° 2 [(KG) 2 T 2 0.
(b) Deduce that KG° has at least two composition factors isomorphic to the trivial module K.

(c) Deduce that KG is not a semisimple K-algebra using Theorem 30.2.
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33 Simple Modules over Splitting Fields

Throughout this section, we assume that K is a splitting field for KG, and we
simply say that K is a splitting field for G.

As explained at the end of the previous chapter this assumption, slightly weaker
than requiring that K = K, implies that the conclusions of Theorem 30.2, Corol-
lary 30.3 and Corollary 30.4 still hold.

We state here some elementary facts about simple KG-modules, which we obtain as consequences of
the Artin-Wedderburn structure theorem.

Corollary 33.1

If K is a splitting field for G, then there are only finitely many isomorphism classes of simple
KG-modules.

Proof: The claim follows directly from Assumption 33 and Corollary 30.3. |

Corollary 33.2

If G is an abelian group and K is a splitting field for G, then any simple KG-module is one-
dimensional.

Proof: Since KG is commutative the claim follows directly from Assumption 33 and Corollary 30.4. |

Corollary 33.3

Let p be a prime number. If G is a p-group, K is a splitting field for G and char(K) = p, then the
trivial module is the unique simple KG-module, up to isomorphism.

Proof: By Lemma 31.2 we have J(KG) = /(KG). Thus KG/J(KG) =~ K as K-algebras by Proposition-
Definition 31.1(b). Now, as K is commutative, Z(K) = K, and it follows from Assumption 33 and
Corollary 30.3 that

[ Irr(KG)| = dimg Z(KG/J(KG)) = dimg K = 1.

Remark 33.4

Another standard proof for Corollary 33.3 consists in using a result of Brauer’s stating that | Irr(KG)|
equals the number of conjugacy classes of G of elements of order not divisible by the characteristic
of the field K.

Corollary 33.5
If K is a splitting field for G and char(K) 1 |G

 then |G| = Ysein(ke) dimk (S)*.

Proof: Since char(K) 1 |G|, the group algebra KG is semisimple by Maschke’s Theorem. Thus it follows
from Assumption 33 and Theorem 30.2 that

> dimg(S)? = dimk (KG) = |G .
Selrr(KG) [ ]
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34 Outlook: Further Directions and Connected Topics

The topics treated in the last week of the semester do not appear in these notes. They are not officially
part of this series of lectures and are not exam matters.



Appendix |: Complements on Algebraic Structures

This appendix provides a short recap / introduction to some of the basic notions of module theory used
in this lecture.

Reference:

[Rot10] J. ). Rotman. Advanced modern algebra. 2nd ed. Providence, Rl: American Mathematical
Society (AMS), 2010.

A  Modules

Notation: Throughout this section we let R = (R, +, ) denote a unital associative ring.

Definition A.1 (Left R-module)

A left R-module is an ordered triple (M, +, -), where M is a set endowed with an internal compo-
sition law

+: M x M — M
(m1,m2) — mq + my

and an external composition law (or scalar multiplication)

RxM — M
(r,m) +— r-m

satisfying the following axioms:

(M1) (M, +) is an abelian group;

(M2) (r1+r2)-m=ry-m+ry-mfor every ri,r, € R and every m e M;
(M3) r-(m1+ m3) =r-mq+r-myfor every r € R and every my, m; € M,
(M4) (rs)-m =r-(s-m) for every r,s € R and every m € M.

(M5) 1g - m = m for every me M.

98



Skript zur Vorlesung: Darstellungstheorie WS 2425, Leibniz Universitidt Hannover 99

Remark A.2

(@) Note that in this definition both the addition in the ring R and in the module M are denoted
with the same symbol. Similarly both the internal multiplication in the ring R and the external
multiplication in the module M are denoted with the same symbol. This is standard practice
and should not lead to confusion.

(b) Right R-modules can be defined analogously using a right external composition law
M xR— R,(m,r)—m-r.

(c) Unless otherwise stated, in this lecture we always work with left modules. Hence we simply
write "R-module" to mean "left R-module", and as usual with algebraic structures, we simply
denote R-modules by their underlying sets.

(d) We often write rm instead of r - m.

Example A.3

(@) Modules over rings satisfy the same axioms as vector spaces over fields. Hence:
vector spaces over a field K are K-modules, and conversely.

(b) Abelian groups are Z-modules, and conversely.
(Check it! What is the external composition law?)

(c) If the ring R is commutative, then any right module can be made into a left module by setting
r-m:=m-r¥reR,Y meM, and conversely.
(Check it! Where does the commutativity come into play?)

Definition A.4 (R-submodule)

An R-submodule of an R-module M is a subgroup U < M suchthat r-ue UV reR,VueU.

Pr

operties A.5 (Direct sum of R-submodules)

If Uy, U are R-submodules of an R-module M, then so is Uy + U, := {u1 + uz | uy € Uy, up € Up}.
Such a sum Uy + U is called a direct sum if U; n U; = {0} and in this case we write U; @ Us.

Definition A.6 (Morphisms)

Let M, N be R-modules. A (homo)morphism of R-modules (or an R-linear map, or an R-homomor-
phism) is a map ¢ : M — N such that:

() @(my + m2) =@(m1)+ @(mz) ¥ my, my € M; and
(it) @(r-m)=r-@(m)¥YreR, Y meM.

A bijective morphism of R-modules is called an R-isomorphism (or simply an isomorphism), and
we write M = N if there exists an R-isomorphism between M and N.

A morphism from an R-module to itself is called an endomorphism and a bijective endomorphism is

called an automorphism.
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Properties A.7
If ¢ : M — N is a morphism of R-modules, then the kernel

ker(@) = {m € M | g(m) = On}
of ¢ is an R-submodule of M and the image
Im(¢) := @(M) = {o(m) | m e M}

of ¢ is an R-submodule of N. If M = N and ¢ is invertible, then the inverse is the usual set-theoretic
inverse map ¢~ and is also an R-homomorphism.

Notation A.8
Given R-modules M and N, we set Homg(M, N) := {¢ : M —> N | ¢ is an R-homomorphism}.
This is an abelian group for the pointwise addition of maps:
+: Homg(M,N) x Homg(M,N) — Homg(M, N)
(¢, ) = @+ P M— N.m = g(m) + ¢(m).

In case N = M, we write Endg(M) := Homg(M, M) for the set of endomorphisms of M. This is a
ring for the pointwise addition of maps and the usual composition of maps.

Lemma-Definition A.9 (Quotients of modules)

Let U be an R-submodule of an R-module M. The quotient group M/U can be endowed with the
structure of an R-module in a natural way via the external composition law

(r,m+U)r—>r~m+U.

The canonical map 7 : M — M/U,m — m + U is R-linear and we call it the canonical (or
natural) homomorphism or the quotient homomorphism.

Proof: Similar proof as for groups/rings/vector spaces|... ]

Theorem A.10 (The universal property of the quotient and the isomorphism theorems)

(@) Universal property of the quotient: Let ¢ : M — N be a homomorphism of R-modules.
If U is an R-submodule of M such that U < ker(¢), then there exists a unique R-module
homomorphism @ : M/U — N such that go = ¢, or in other words such that the following
diagram commutes:

Concretely, o(m + U) = ¢(m) V. m+ U e M/U.
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(b) 1st isomorphism theorem: With the notation of (a), if U = ker(¢), then
@ : M/ker(¢) — Im(¢)
is an isomorphism of R-modules.

(c) 2nd isomorphism theorem: If Uy, U, are R-submodules of M, then so are Uy n U, and Uy + Uy,
and there is an isomorphism of R-modules

(U1 + Uz)/Uz o~ U1/(U1 N Uz).

(d) 3rd isomorphism theorem: If U; < U, are R-submodules of M, then there is an isomorphism

of R-modules
(M/Uy) [ (Up/Uy) = MU, .

(e) Correspondence theorem: If U is an R-submodule of M, then there is a bijection

{R-submodules X of M | U< X} «— {R-submodules of M/U}

X —  X/U
] (Z) — /.
Proof: Similar proof as for groups/rings/vector spaces|... ]

Definition A.11 (Irreducible/reducible/completely reducible module)
An R-module M is called:

(a) simple (or irreducible) if it has exactly two submodules, namely the zero submodule 0 and
itself;

(b) reducible if it admits a non-zero proper submodule 0 <€ U < M;

(c) semisimple (or completely reducible) if it admits a direct sum decomposition into simple
submodules.

Notice that the zero R-module O is neither reducible, nor irreducible, but it is completely reducible.

Exact sequences constitute a very useful tool for the study of modules. Often we obtain valuable
information about modules by plugging them in short exact sequences, where the other terms are known.

Definition A.12 (Exact sequence)

A sequence L 2 M %5 N of R-modules and R-linear maps is called exact (at M) if Im ¢ = ker (.

Remark A.13 (Injectivity/surjectivity/short exact sequences)

(@) L s Mis injective <= 0 — L %5 M is exact at L.

(b) M o Ns surjective <= M YN — 0is exact at N.




Skript zur Vorlesung: Darstellungstheorie WS 2425, Leibniz Universitidt Hannover 102

()0 — L oMY N — 0 is exact (Le. at L, M and N) if and only if ¢ is injective, ¢ is
surjective and ¢ induces an R-isomorphism ¢y : M/Im @ — N, m + Im ¢ — y(m).

Such a sequence is called a short exact sequence (s.e.s. for short).

(d) If ¢ € Homg(L, M) is an injective morphism, then there is a s.es.
0— L -2 M -2 Coker(gp) — 0

where 7 is the canonical projection.

(e) If ¢ € Homg(M, N) is a surjective morphism, then there is a s.es.

0 — ker(¢) > M- N—0,

where i is the canonical injection.

Lemma-Definition A.14 (Split short exact sequence)

Ases 0— L% M- N— 0 of R-modules is called split if it satisfies one of the following
equivalent conditions:

(@) ¢ admits an R-linear section, i.e. if 3 € Homg(N, M) such that ¢y o g = Idp;
(b) @ admits an R-linear retraction, i.e. if 3 p € Homg(M, L) such that po ¢ = Id;;

(c) 3 an R-isomorphism a : M — L@ N such that the following diagram commutes:

0 [— pm—Y N 0
IdLl O la O lld/\/
0—>L—>ILdNL>N—>0,

where i, resp. p, are the canonical inclusion, resp. projection.

Remark A.15

If the sequence splits and o is a section, then M = ¢(L) @ a(N). If the sequence splits and p is a
retraction, then M = ¢(L) @ ker(p).
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B Algebras

In this lecture we aim at studying modules over the group algebra, which are specific rings.

Definition B.1 (Algebra)

Let R be a commutative ring.

(a) An R-algebra is an ordered quadruple (A, +, -, ) such that the following axioms hold:
(A1) (A, +,-) is a ring;
(A2) (A, +,#) is a left R-module; and
(A3) r«(a-b)=(rxa)-b=a-(r+xb)VYa,beAVreR

(b) A map f: A— B between two R-algebras is called an algebra homomorphism iff:

(i) f is a homomorphism of R-modules; and
(ii) f is a ring homomorphism.

Example 20

(@) A commutative ring R itself is an R-algebra.
[The internal composition law ""

and the external composition law "+" coincide in this case.]

(b) For each n e Z>1 the set M,(R) of n x n-matrices with coefficients in a commutative ring R
is an R-algebra for its usual R-module and ring structures.
[Note: in particular R-algebras need not be commutative rings in general!]

(c) Let K be a field. Then for each n € Z>¢ the polynom ring K[Xj,..., X,] is a K-algebra for
its usual K-vector space and ring structure.

(d) If K is a field and V a finite-dimensional K-vector space, then Endg (V) is a K-algebra.
(e) R and C are Q-algebras, C is an R-algebra, ...

(f) Rings are Z-algebras.

Definition B.2 (Centre)
The centre of an R-algebra (A, +,-, %) is Z(A) :={a€A|a-b=b-a Vbe A}
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C Tensor Products of Vector Spaces

Throughout this section, we assume that K is a field.

Definition C.1 (Tensor product of vector spaces)

Let V, W be two finite-dimensional K-vector spaces with bases By = {v1,...,v,} and By =
{wr, ..., Wn} (m, n € Zxg) respectively. The tensor product of V and W (balanced) over K is by
definition the (n - m)-dimensional K-vector space

Ve W

with basis Byg,w = {vi®@w; [1 <i<n,1<j<m}

In this definition, you should understand the symbol "v; ® w;" as an element that depends on both v;
and w;. The symbol '®" itself does not have any hidden meaning, it is simply a piece of notation: we
may as well write something like x(v;, Wj) instead of "v; ® wj', but we have chosen to write "v; ® w;".

Properties C.2

(@) An arbitrary element of V ®x W has the form

Z Z Aij(vi @ wj)  with {)\ij}ggign cK.

i=1j=1 <jsm
(b) The binary operation

B\/ X BW I BV®KW
(viowj) = vi®w;
can be extended by K-linearity to
-®—: Vx W — Ve W
(v=2Avw =X mw) = vOw =2 S A (vi @ wy)
It follows thatV ve V,we W, Ae K,
VR (Aw) = (Av) @w = A(vRw),

and V x1,....,x,e V,y1,...ys e W,
S

(2 x)®© (>, y) ZZZM@@//-

i=1 j=1 i=1j=1

Thus any element of V ®x W may also be written as a K-linear combination of elements of
the form v@w with v e V, w € W. In other words, {v®w | v e V,w € W} generates V®@x W
(although it is not a K-basis).

(c) Up to isomorphism V ®k W is independent of the choice of the K-bases of V and W.
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Definition C.3 (Kronecker product)

If A= (Ai/)ij e M,(K) and B = (st)rs € M,,(K) are two square matrices, then their Kronecker
product (or tensor product ) is the matrix

Notice that it is clear from the above definition that Tr(A® B) = Tr(A) Tr(B).

Example 21
E.g. the tensor product of two 2 x 2-matrices is of the form

ae af be bf

a b e f | | ag ah bg bh
[c d]®[ ]_ ce cf de df € Ma(K).

cg ch dg dh

Lemma-Definition C.4 (Tensor product of K-endomorphisms)

ffi:V—Vandf,: W— W are two endomorphisms of finite-dimensional K-vector spaces V
and W, then the tensor product of f{ and f; is the K-endomorphism f1 ® f> of V ®x W defined by

F®fh: VoW — VW
Ve w —  (ARH)(vew):=f(v)® fH(w).

Furthermore, Tr(f1 ® f2) = Tr(f1) Tr(f2).

Proof: It is straightforward to check that fi ®f, is K-linear. Then, choosing ordered bases By = (v, ..., Vi)
and By = (wq,..., wy,) of V and W respectively, it is straightforward from the definitions to check that
the matrix of 1 ® f, w.r.t. the basis Byg,w, ordered w.r.t. the lexicographical order, is the Kronecker
product of the matrices of f; w.r.t. By and of f, w.rt. to By. The trace formula follows. |
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D Integrality and Algebraic Integers

We introduce here the concept of integrality for elements of a commutative ring. We are, however,

essentially interested in the field of complex numbers and its subring Z.

Definition D.1 (integral element, algebraic integer)

Let A be a subring of a commutative ring B.

(@) An element b € B is said to be integral over A if b is a root of monic polynomial f € A[X]
(L.e. f is a polynomial of the form X" + an_1 X"+ ...+ a1 X+ ag with a,_1,...,a0 € Aand
f(b) = 0). If all the elements of B are integral over A, then we say that B is integral over A.

(b) If A=2Z and B = C, an element b € C which is integral over Z is called an algebraic integer.

Theorem D.2

Let B be a commutative ring, let A € B be a subring and let b € B. Then, the following assertions
are equivalent:

(@) b is integral over A;
(b) the ring A[b] is finitely generated as an A-module;

(c) there exists a subring S of B containing A and b which is finitely generated as an A-module.

Recall that A[b] denotes the subring of B generated by A and b.

Proof:

(a)=(b):

Let ag,...,a,_1 € A such that b” + a,_1b"~" + ...+ a1b + ay = 0 (x). We prove that A[b] is
generated as an A-module by 1,b,...,b" ", ie. A[b] = A+Ab+...+Ab"~". Therefore, it suffices
to prove that b € A+ Ab + ... + Ab"~! =: C for every k = n. We proceed by induction on k:

- If k = n, then (%) yields b" = —a,_1b" ' —... —a1b —ag e C.
- If k > n, then we may assume that b",...,b*™" € C by the induction hypothesis. Hence
multiplying (%) by b*—" yields
b* = —a,4b* T — . —ayb* " —ggb* " e C
because a,_1,..., a9, b*=1, ..., bk " e C.
. Set S := A[b].

: By the assumption, A[b] € S = Ax; + ... + Ax,, with xq,...,x, € B, n € Z.y. Thus, for each

Tr

1 < i< nwe have bx; = 27:1 a;jx; for certain a;; € A. Set x := (x4,...,x,) " and consider the

n x n-matrix M := bl, — (a;;);j € M,(S). Hence,
Mx =0 = adjMMx =0,

where adj(M) is the adjugate matrix of M (i.e. the transpose of its cofactor matrix). By the
properties of the determinant (Linear Algebra), we have

adj(M)M = det(M)], .

Hence, det(M)x; = 0 for each 1 < i < n, and so we have det(M)s = 0 for every s€ S. As 1€ S,
this implies that det(M) = 0. It now follows from the definition of M that b is a root of the monic
polynomial det(X -/, — (a;j)ij) € A[X], thus integral over A.

106
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Corollary D.3

Let B be a commutative ring and let A € B be a subring. Then {b € B | b integral over A} is a
subring of B.

Proof: We need to prove that if b, c € B are integral over A, then so are b+ ¢ and b - c. By Theorem D.2(b)

and its proof both A[b] and A[c] are finitely generated as an A-modules. More precisely, there exist
n,m e Z-g such that A(b] = A+Ab+...+Ab"~'and A[c] = A+ Ac+...+Ac" . Thus, S := A[b, ]
is generated as an A-module by the set {bic/ | 0 < i < n,0 < j < m}, ie. finitely generated.
Theorem D.2(c) now yields that b + ¢ and b - ¢ are integral over A because they belong to S. ]

Example 22

All the elements of the ring Z[i] of Gaussian integers are integral over Z, hence algebraic integers,
since i is a root of X? + 1 € Z[X].

mma D.4
If b e Q is integral over Z, then b e Z.

Proof: We may write b = 5, where ¢ and d are coprime integers and d > 1. By the hypothesis, there exist

ag,...,0,—1 € Z such that
o Cn—1 c
o +an,1—d”_1 +...+ a +ap=0,
hence
" +dap_1c" "+ ... +d" a1 +d"ap =0.
divisible by d
Thus d | ¢". As ged(c,d) =1 and d = 1 this is only possible if d = 1, and we deduce that b e Z. |

Clearly, the aforementioned lemma can be generalised to integral domains and their field of fractions.
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E Chain Conditions and the Jordan-Holder Theorem

Definition E.1 (Composition series | composition factors | composition length)
Let M be an R-module.

(@) A series (or filtration) of M is a finite chain of submodules

O=MycMc...cM,=M (neZxp).

(b) A composition series of M is a series
O=MycMc...cM, =M (n € Zxp)

where M;/M;_1 is simple for each 1 < i < n. The quotient modules M;/M;_4 are called the

composition factors (or the constituents) of M and the integer n is called the composition
length of M.

The zero module is understood to have a composition series 0 = My = M (i.e. with n = 0) and compo-
sition length equal to 0. Moreover, clearly, in a composition series of a non-zero module all inclusions
are in fact strict because the quotient modules are required to be simple, hence non-zero.

Definition E.2 (Chain conditions | Artinian and Noetherian rings and modules)

(@) An R-module M is said to satisfy the descending chain condition (D.C.C.) on submodules
(or to be Artinian) if every descending chain M = My 2 My 2 ... 2 M, 2 ... 2 {0} of
submodules eventually becomes stationary, i.e. 3 mgy such that M,, = M,,, for every m = mo.

(b) An R-module M is said to satisfy the ascending chain condition (A.C.C.) on submodules (or to
be Noetherian) if every ascending chain 0 = My S My < ... € M, < ... < M of submodules
eventually becomes stationary, i.e. 3 mg such that M,, = My, for every m > mo.

(c) The ring R is called left Artinian (resp. left Noetherian) if the reqular module R° is Artinian
(resp. Noetherian).

Next we see that the existence of a composition series implies that the module is finitely generated.
However, the converse does not hold in general. This is explained through the fact that the existence
of a composition series is equivalent to the fact that the module is both Noetherian and Artinian.

Theorem E.3 (Jordan-Halder)

Any series of R-submodules 0 = My € My < ... € M, = M (r € Z>9) of an R-module M # 0
which has a composition series may be refined to a composition series of M. In addition, if

O=MycMy<c...cM, =M (n€Z>o)

and
O=MycMic...cM, =M (meZsp)

are two composition series of M, then m = n and there exists a permutation m € &, such that
Mi/M{_y = My(iy/Mxi—1 for every 1 < i < n. In particular, the composition length is well-defined.
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Proof: See Algebra Il. ]

Corollary E.4
If M is an R-module, then TFAE:

(@) M has a composition series;
(b) M satisfies D.C.C. and A.C.C. on submodules;

(c) M satisfies D.C.C. on submodules and every submodule of M is finitely generated.

Proof: See Algebra Il. |

Theorem E.5 (Hopkins’ Theorem)
If M is a module over a left Artinian ring, then TFAE:

(@) M has a composition series;
(b) M satisfies D.C.C. on submodules;
(c) M satisfies A.C.C. on submodules;

(d) M is finitely generated.

Proof: See Algebra Il. ]
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General symbols

Z>Clr Zga, Z<u

S

e =y ® e dMDEC
X

>~ Q
(/’4
[wpl
Q
N
=yl

Group theory
An

Con

Ca(x)

c(G)

D5,

FiXX(g)

field of complex numbers

finite field with g elements
primitive square root of one in C
identity map on the set M
image of the map f

kernel of the morphism ¢

the natural numbers without 0
the natural numbers with 0

the prime numbers in Z

field of rational numbers

field of real numbers

ring of integer numbers
{meZ|mz>=a(resp.m>a,m>=a,m<a)}
cardinality of the set X
Kronecker’s delta

union

disjoint union

intersection

summation symbol

cartesian product

direct sum

tensor product

empty set

for all

there exists

isomorphism

complex conjugate of a € C

a divides b, a does not divide b
restriction of the map f to the subset S

alternating group on n letters

cyclic group of order m in multiplicative notation
centraliser of x in G

set of conjugacy classes of G

dihedral group of order 2n

set of fixed points of g on X
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[G,G] or G
G/N

GL,(K)
H<G H<G
N<= G

Nc(H)
PGL,(K)

Qs

Sn
SL,(K)
Syl,(G)
Z(G)

Z/mZ

G|

|G : H|

[x]

[g. h]

(9
glg"="1)

Linear algebra
det

dimg

Endk(V)
GL(V)

<X1,--~ an>K
Mnxm(K)
M, (K)

K

W<V
{e,],...'en}
(61,“-,6”)

Representations and characters
G,....G
G.....G
Cl(G)
Zc(¢)

G
Infd N
Indf;, 16
Irr(G) = {1, .., Xr}
Irr(GlY)

ker(x)
F(G,K)

commutator subgroup of G

quotient group G modulo N

general linear group over K

H is a subgroup of G, resp. a proper subgroup
N is a normal subgroup G

normaliser of H in G

projective linear group over K

quaternion group of order 8

symmetric group on n letters

special linear group over K

set of Sylow p-subgroups of the group G
centre of the group G

cyclic group of order m in additive notation
order of the group G

index of H in G

conjugacy class of x

commutator of g and h

cyclic group generated by g

cyclic group of order m generated by g

determinant of a matrix/linear transformation
K-dimension

endomorphism ring of the K-vector space V
set of invertible linear transformations of
the vector space V

K-linear span of the set {xq, -, x,}

ring of n x m-matrices with coefficients in K
ring of n x n-matrices with coefficients in K
algebraic closure of the field K

trace of a matrix/linear transformation

W is a K-subspace of V

a basis of K"

an ordered basis of K"

the conjugacy classes of G

the class sums of G

C-vector space of class functions on G
inertia group of ¢ in G

inflation from G/N to G

induction from H to G

set of irreducible characters of G

set of irreducible characters of G above
kernel of the characters of x

space of K-valued functions of G



KG
Resg, 1
Z(KG)
Z(x)
p~p
preg

PV

Xreg

Xv

w1, ..., W
(=—)c

1¢

Ring and module theory
Homg(M, N)

Endg(M)

KG

€:KG— K

I(KG)

Irr(R)

J(R)
M| N
M®r N
RO

group algebra of G over the field K
restriction from G to H

centre of KG

centre of the character y

p is equivalent to p’

the reqular representation of G
representation associated to the G-vector space V
reqular character of G

character of the G-vector space V
the central characters of G

scalar product on Cl(G)

the trivial character of G

R-homomorphisms from M to N
R-endomorphism ring of the R-module M
group algebra of the group G over the field K
augmentation map

augmentation ideal

set of representatives of the isomorphism classes of
simple R-modules

Jacobson radical of the ring R

M is a direct summand of N

tensor product of M and N balanced over R
reqular left R-module on the ring R
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Greek Alphabet

lower-case letter

upper-case letter

name

alpha

beta

gamma

Q=< | ™

delta

™
™

epsilon

zeta

eta

theta

tota

kappa

lambda

mu

nu

Xi

QM < |T|>X|~|D|S|N”

omicron

pt

rho

sigma

tau

upsilon

phi

chi

psi

Ol € X el <dM T 3oz >~ — © TN M| > | ®| >

omega
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